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Foreword

This  handbook  aims  to  be  accessible  to  the  major 
public. This work is meant to be used as a pedagogical tool 
and  as  a  reference  book.  The following  book represents 
personal reflections on the probabilistic nature of measures 
in  science.  In  a  classical  curriculum  these  aspects  are 
seldom, if  not  at  all,  dealt  with.  It  is  important  that  the 
experimental  and  practical  foundations  of  science  are 
complementary  to  the  theoretical  lectures.  There  is  a 
scientific beauty that  arises  from the interaction between 
theory and experience.

While  introducing  the  fundamental  principles  of 
statistics, this book explains how to determine uncertainties 
in different experimental situations. Many examples come 
from  courses  and  practical  work  done  in  preparatory 
classes for the engineering schools.

I hope you enjoy reading!

Thanks to the readers who by their questions,  comments 
and constructive criticisms make it possible to improve the 
book.

Thanks to the life and to all those who have come before 
me. 
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I. RANDOM VARIABLE

 A. How to measure a quantity ?

In what follows, X is a random variable and {x i} a  
sample of n outcomes.

If we ask how many days are in a week, it is easy to 
answer.  Now,  consider  different  groups  of  students  who 
have  measured  the  thermal  capacity  of  water1 and  have 
obtained the following values : {5100; 4230; 3750; 4560; 
3980} J/K/kg. How can we estimate the water capacity in 
this situation? The answer will use a probabilistic approach.

 B. The center of a distribution

How does one determine the most representative value 
of a sample? There are different ways to define the center 
of  a  distribution.  For  example,  we  have  the  mode,  the 
median and the mean. The mode is the value which occurs 
with the greatest frequency in a data set. The median is the 
middle of a distribution that divides the sample into two 
parts  whereby  each  half  has  an  equal  number  of 
observations.  The  most  commonly  used  measure  of  the 

1 PHYSIQUE : The amount of energy needed to raise the temperature of 
one kilogram of mass by 1°C. That way, the water stores energy 
and can then return it by decreasing its temperature. Tables : cwater = 
4180 Joules per Celsius degree and per kilogram. 
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center is the mean. The mean is the sum of the observed 
values divided by the number of observations :

x=
x1 x2...x i...xn

n
 also x=

∑
i=1

n

x i

n
2

For the thermal capacity of water we have :

c=
51004230375045603980

5
=4324 J /K / kg

We have considered the  arithmetic mean. We could have 
used the geometric mean: 

x=
n∏ x i

For  instance  for  two speeds  of  20  m/s  and 40 m/s,  the 
geometric  mean  is √20m /s⋅40m /s≃28.3m / s whereas 
the arithmetic mean is of 30 m/s. The arithmetic mean is 
used more  often globally due to  its  conveniently  simpler 
calculation.

2 MATH : To simplify the writing of a sum, the Greek letter sigma is 
used as a shorthand and read as "the sum of all x i with i ranging  
from 1 to n".
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 C. The dispersion of a distribution 

In addition to locating the center of the observed values  we 
want to evaluate the extent of variation around the center. 
Two data sets may have the same mean but may be differ-
ent with respect to variability. There are several  ways to 
measure the spread of data. Firstly the range is the differ-
ence between the maximum and minimum values in  the 
sample. The sample range of the variable is very easy to 
compute, however it is sensitive to extreme values that can 
be unrepresentative.

The sample standard deviation is preferred:

s=∑i=1

n

x i−x
2

n−1

It is the most frequently used measure of variability.

For the thermal capacity of water we have :

and sc≃530 J /K / kg
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The mean deviation may also be used (see Exercise 1).

Using the standard deviation formula, dividing by n rather 
than n-1, will obtain the root mean square deviation (square 
root  of  average  square  deviation).  The  choice  of  the 
standard  deviation  is  justified  on  page  130.  Besides,  the 
values of n are often large and the difference is small.

 D. Examples of distributions
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Case 2 :

Case 3 :
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The mean is not always the most represented value (case 1  
and 2) and in some cases does not appear at all. In case 3 
the  histogram  is  symmetrical  and  illustrating  that  the 
median and mean are equal.

In the event that some values are represented several times, 
we determine the frequency fi for each value  xi. 

We have n=∑
i=1

c

f i , where c gives the number of different 

values of xi.

The mean and standard deviation then become:

x=
∑
i=1

c

f i⋅xi

n
=∑

i=1

c f i

n
⋅xi   

s=√∑i=1

c

f i( xi− x̄)2

n−1

Sometimes the data can be grouped into class intervals. For 
example, if we measure the size of the inhabitants of a city, 
we can group all the inhabitants with a size between 160 
cm and 170 cm within the same class interval. The number 
of observations in this class is the frequency and the middle 
of this class interval is the value assigned, here 165 cm (see 
Exercise 5).

The more the histogram is concentrated around the center, 
the more the standard deviation is small.
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 E. Central limit theorem

1) Population and samples

Consider a city of one million inhabitants. To survey 
the population we can interview a sample of only one thou-
sand  people  drawn  at  random.  Thanks  to  the  statistical 
tools, from this n=1000 individuals sample, we can have 
information on the whole population. The larger the sample 
size is, the more accurate the results will be. Let x  be the 
sample mean and  s be the sample standard deviation.  For 
the population we denote μ (Greek letter mu) the mean 
and σ (sigma) the standard deviation. The larger  the sam-
ple, the more likely x̄  and s are close to μ and σ respec-
tively.

In the case of opinion polls, samples are around one 
thousand people. If we measure the size of one thousand 
inhabitants selected randomly from the population of a city 
of one million people, the average size of this sample is 
likely to be close to the average size of the entire popula-
tion but has no reason to be equal.

Let us take the example of a coin toss. The coin is 
balanced and the outcomes are heads or tails. In this case 
the population is infinite and we can have an infinit number 
of measurements. Furthermore, the probabilities are known 
and we can determine the population features.

7



When the sample size becomes very large, it tends towards 
the population : =lim

n∞
x 3.

We introduce here the concept of probability :

p i=lim
n∞

f i

n
where pi is the probability of the outcome xi.

With this formula (using the formula page  6) we find the 
population mean formula : =∑ pi⋅xi .

Also  if  we  consider  all  the  events  possible,  we  have
∑ pi=1   (1=100%).

The outcome  heads is associated with  x0=0, and the out-
come  tails with  x1=1.  The  coin  is  balanced  as 
p0=p1=1/2=0,5=50%  and  μ=p0.x0 +p1. x1. 

Furthermore: =lim
n∞

s and with the formula for s page 6 

we obtain σ=√∑ p i⋅(x i−μ)
2 (for n large, n-1 is close to 

n).

Eventually : =0,5 and =0,5 .

3 MATH : Reads as «μ is equal to the limit of x when n tends to 
infinity».
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Let us flip nine coins and collect a sample : 

{0; 1; 1; 0; 1; 1; 1; 0; 0}.  

Then we find x≃0,56 and s≃0,53 .

If this procedure is performed many times, each time we 
would have a different result for x .

For example, if two other samples are taken:

{1; 1; 0; 1; 1; 0; 1; 1; 0} then x≃0,67 and s≃0,50

{0; 1; 0; 0; 0; 0; 1; 0; 0} then x≃0,22 and s≃0,44

What would be the distribution of these results as a whole? 
(Called the sampling distribution)

The values obtained for the samples are generally different 
from those of the population, but the larger the sample, the 
more likely it is that the values are closer to those of the 
population.

Case  of  a  sample  with  n=50,  where  x̄≃0,520  and
s≃0,505 :

{00100011111110010111110001001101101000110000011101}

9



2) The central limit theorem

CENTRAL LIMIT THEOREM :

Within a population we collect random samples of size n.  
The mean of the sample x̄  varies around the mean of the  
population  μ  with  a  standard  deviation  equal  to  σ/√n,  
where σ is the standard deviation of the population.
As  n  increases,  the  sampling  distribution of  x̄  is  
increasingly  concentrated  around  μ  and  becomes  closer  
and closer to a Gaussian distribution.

We will describe in due course what a Gaussian distri-
bution, also called normal distribution, is. For the moment 
we will simply consider a bell curve. This is a very impor-
tant theorem. Whatever the form of the population distri-
bution, the sampling distribution tends to a Gaussian, and 
its dispersion is given by the Central Limit Theorem.

This is illustrated through the following diagrams:

On the left we have the probability p of an event x (popula-
tion distribution). 

10



Hypothetically, for a city with a population of one million 
inhabitants, p could represent the probability that one have 
a given height x. If we could measure the height of all the 
inhabitants,  we  could  exactly  determine  their  average 
height μ and the standard deviation σ. However, it is prag-
matically difÏcult, if not impossible, to measure a popula-
tion of that size. Therefore a sample size of only a thousand 
inhabitants is taken to reduce the burden of labour. For this 
to be as representative of the whole population as possible, 
the thousand-person sample is picked randomly.

We obtain a thousand measures of height from x1 to  x1000. 
From this sample of size n=1000 we calculate a mean x̄  
and a standard deviation s. We think that x̄  is close to μ, 
but at the same time there is no reason for it to be equal to 
μ. We put this value of x̄  on the right side of the figure on 
page 10.

We take a new random sample of a thousand people and a 
new value for x̄ .

We then repeat this operation a great number of times. We 
see on the right the distribution of the samples obtained:

11



3) Student's t-value and uncertainty

The  central  limit  theorem  applies  to  the  limit  of  large 
numbers.  In the particular case where the distribution of 
the  population  is  normal  we  can  apply  it  from  n small 
thanks to the coefÏcients of Student t.

Prediction interval :

If  μ and  σ are  known,  the  sampling  distribution  is  also 
Gaussian and the expected statistical fluctuations are with a 
probability of p% between μ−t∞σ /√n  and μ+ t∞σ /√n .

The t-values are read on page 239.

Confidence interval :

In the case of the calculation of uncertainties  μ and  σ are 
not known and we estimate them from the sample with x̄  
and  s. Due to a small statistic, there is widening given by 
the Student's t-distribution:

=x±t⋅ s

n

The Student's t-value depends on the sample size n and on 
the confidence. If the confidence is 95%, we have 95 in 100 
chance that μ is between x−t⋅s /n and x̄+ t⋅s /√n .

12



We recognize here the notion of measurement  uncertainty
 x 4:

 x=x± x with  x=t⋅
s

n
 x is also called absolute uncertainty and Δ x /|̄x| rela-

tive uncertainty.

Let us take again the calorimetry experiment described on 
page 1. We want to know the thermal capacity of the water 
with a confidence of 95%. As is often the case in experi-
mental sciences, we consider that the data follow a normal 
distribution, because by the influence of many independent 
factors on the value of the measured quantities, we still ex-
pect,  under  the  central  limit  theorem,  to  have  Gaussian 
fluctuations.

We find for four degrees of freedom (ddl=n-1) a Student's 
t of 2.78.

From  where  : c=c±t⋅sc /n=4320±660 J /K /kg with 
95% confidence.
Here following the dispersion of the values measured by 
the  students  :  Δ c / c̄≃15 % .  The  calorimetry  measure-
ments are usually imprecise.  The expected value,  known 
here, is well within the range :

3660<4180<4980

In experimental sciences we endeavor to quantify all 
natural phenomena. Yet, due to the very nature of the ex-

4 MATH : Reads "delta x".
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perimental approach, the various parameters which make it 
possible to describe a experimental situation are not per-
fectly known. We do not have a simple numerical value as-
sociated with each characteristic, but an interval for a given 
confidence. Strictly speaking, any experimental value must 
associate its uncertainty with its confidence.

Exceptions:

▸ Large number samples: the size of the sample n is large 
enough to be able to directly apply the central limit theo-
rem. The sampling distribution is normal regardless of the 
distribution of  the population.  We do not have to worry 
about Student's distribution which anyway identifies with a 
Gaussian distribution in this case.

▸ Small samples and normality of the data: we apply the 
Student law as before.

▸ Small samples with non-normality of data: For example, 
we find by computing the skewness and kurtosis of the data 
that they do not match a normal distribution. To counter 
this, it is necessary to perform a case by case study. For in-
stance, when we have a uniform distribution of the popula-
tion, the prediction interval given on page  12 works from 
n=2 (it is shown by using the data of the article  Measure  
with a ruler p154) .  However for a binomial  distribution 
with parameters n=2 and p=0.24, the 50% prediction inter-
val  contains 0% of the values... A more complex case on 
page 146 shows for n = 12, in comparison with a numerical 
simulation,  that  the  central  limit  theorem underestimates 
the confidence interval. 

14



4) Examples

A large number of random factors will influence the 
measurement  of  a  physical  quantity;  independent  factors, 
which,  whatever  their  natures  will  ultimately  generate  a 
Gaussian distribution of observations. Let us consider two 
examples, the toss of a coin and the roll of a six-sided die.

Consider the sample space for tossing a fair coin  n 
times. We count the number of tails. For one toss, we have 
two outcomes possible,  one with zero  tails and one with 
one tails. 

For two tosses, we have four outcomes possible, one with 
zero tails (H H), two with one tails (H T or T H) and one 
with two tails (T T). The more tosses that are thrown, the 
closer we get to a Gaussian distribution.

one 
toss

n=1

two 
tosses

15



We can obtain the probability (the number of tails divided 
by  the  number  of  possibilities  2n)  as  a  function  of  the 
number of tails. For n = 1 we have the distribution of the 
population  and  following  the  sampling  distributions  for 
different values of n.

three  
tosses

four  
tosses

0 1 2 3 4
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1
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4
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7

five 
tosses

0 1 2 3 4 5

0

2

4

6

8

10

12

six  
tosses

0 1 2 3 4 5 6

0

5

10

15

20

25

Similarly  for  the  dice  we enumerate  the  possibilities  for 
their sum and the distribution also tend towards a Gaussian.
For a single die, the sum simply corresponds to the value of 
the die. We have a possibility for each value:

16



one die :

1 2 3 4 5 6

0

1

2

For two dice, there is only one possibility for the sum to be 
two: 1 for the first die and 1 for the second die. For the sum 
to be three, there are two possibilities: 1 and 2, or, 2 and 1. 
The most likely with two dice is to obtain a sum of 7: (1,6) 
(6,1) (2,5) (5,2) (3,4) (4,3).

two dice :

2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

three dice :

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

20

25

30
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For four dice, we already recognize the bell curve and the 
profile is clearly of the Gaussian type:

four  
dice :

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

20

40

60

80

100

120

140

160

On this last example, we check the validity of the central 
limit theorem.

The population mean is :

μx=(1+2+3+4+5+6 )/6=3.5

We verify that the sampling distribution mean is the same:
μx̄=14 /6=3.5 .

The population standard deviation is :

 x=∑ pi⋅xi−
2 then

σx=√1/6⋅{(1−3.5)2+(2−3.5)2+(3−3.5)2+(4−3.5)2+(5−3.5)2+(6−3.5)2}

and σx≃1.71

18



also for four dice :  σ x̄=σ x/√n=σx /2≃0.85 .  Now, on the 
above curve,  40% from the maximum (explanation page 
21), we have a deviation close to  3.5  (between  3 and  4), 
and an average of 3,5/4≃0.88 . It matches.

 F. Gaussian distribution

1) Definition of continuous distribution

Some quantities are fundamentally continuous : time, 
space, temperature, et cetera. Time is like fluid, it does not 
jump  from  one  value  to  another.  A  continuous  random 
variable can take any value in an interval of numbers and 
has  a  continuum of  possible  values.  On  the  other  hand 
when we throw a six-sided die, it is impossible to say "I got 
2.35!". It is a forbidden value, only integer values from one 
to six are allowed.

Thus, some probability distributions are discrete and 
others continuous. For a die we have : p1=...=p6=1/6  and 

∑
i=1

n=6

pi=1 . Now, if we are interested in the height of the 

inhabitants of a city, there is a continuum of possibilities, 
the  distribution  is  continuous. We define  the  probability 
density function p(x) with  p(x)dx the probability to be be-
tween x and x+dx. Where dx is a small variation, and x+dx 
is close to  x. The continuous random variable probability 
model assigns probabilities to intervals of outcomes rather 
than to individual outcomes. 

19



So, the probability that the event is realized on the set of 
possible values is 100%:

∫
x=−∞

∞

p x dx=1

Mean and variance in the continuous case :

μ=∫
−∞

+∞

x⋅p(x )dx V=σ2=∫
−∞

+∞

(x−μ)2 p (x)dx

2) Bell-shaped density curve

A continuous random variable X following normal distribu-
tion has two parameters: the mean μ and the standard devi-
ation σ. Density function :

p  x = 1

2⋅
e
−1

2  x− 
2

In the mathematic tools section page 168 some demonstra-
tions are performed.

5 MATH : The mean is also called E(X), expectation of X.  σ2=V(X) is 
called  variance of  the  random  variable  X.  Properties  : 
E(aX+b)=aE(X)+b ,  V(aX)=a2V(X)  and  V(X)=E(X2)-E(X)2.
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We have represented two cases on the following graph:

The total area under the curve is always 1. The probability 
concentrated within interval [μ − σ, μ + σ] is 0.68 :

∫
μ−σ

μ+σ

p(x )dx=0.683 ...≃68 %

We evaluate the standard deviation at 60%.pmax :

p (μ±σ)/ p
max
=1 /√e≃0.607
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The probability concentrated within interval [μ − 2σ, μ + 
2σ] is 0.95 :

∫
μ−2σ

μ+2σ

p(x )dx=0.954 ...≃95%

The probability concentrated within interval [μ − 3σ, μ + 
3σ]  is more than 0.99 :

∫
μ−3σ

μ+3σ

p(x )dx=0.997 ...>99 %
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3) Standard normal distribution

A  standard normal distribution Z is normally distributed 
with a mean μ = 0  and a standard deviation σ = 1.

The  distribution  X  is  transformed  into  a  distribution  Z 
using the following two transformations : x '=x−

and  z= x−


     then :       p  z =
1

2
e
− z

2

2
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 G. Hypothesis test

Similarly  to  how  to  estimate  the  mean  of  an  unknown 
probability  distribution,  the  central  limit  theorem is  also 
used for a hypothesis test. With a collected sample we have 
used  the  properties  of  the  sampling  distribution  to 
determine a value and it's uncertainty. For the hypothesis 
tests,  we  proceed  in  the  other  direction:  the  law  of 
probability is assumed known, so the sampling distribution 
is  perfectly  known  and  we  take  a  sample  to  define  a 
decision  criterion  allowing  us  to  accept  or  reject  the 
hypothesis.

Using the mean we test a hypothesis H0.  This is re-
ferred to as the null hypothesis. It is an assumption made 
on the probability distribution X. Let μ and σ be the mean 
and standard deviation of X. We take from the population a 
sample of size n  large enough. The sample mean is x̄ . If
x̄  is  between μ−t∞ .σ/√n  and μ+ t∞ .σ /√n then  H0 is 

accepted. However if x̄  is outside of those values, the null 
hypothesis is rejected (two-tailed test).
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We consider the coefÏcient t∞ of a normal distribution for a 
p% confidence (or Student's t-value when n → ∞).

We can also use other characteristic intervals of the sam-
pling distribution. In general, the hypothesis H0 implies a 
property A of the sampling distribution. Here, the involve-
ment is not deterministic but statistical and decision-mak-
ing proceeds differently.

Deterministic test case : H 0⇒ A

• If we observe A then H0 cannot be rejected.

• If we do not observe A then H0 is rejected6.

Statistical test case :

In p% of cases : H 0⇒ A

In (1-p)% of cases : H 0 ⇏ A

• If we observe A then H0 cannot be rejected

with p% confidence.

• If we do not observe A then H0 is rejected, with a 
risk to reject H0 when it is true of (1-p)%.

This protocol makes it possible to make a decision, but at 
the same time it carries risks of making a mistake. We can 
reject the hypothesis when it is true or we can accept the 
hypothesis when it is false.

6 The contrapositive of an implication : if P⇒Q then Q̄⇒ P̄ .
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Accept H0 Reject H0

H0  is true Right decision
Wrong decision
(error of the first 

kind  α)

H0  is false
Wrong decision 

(error of the 
second kind  β)

Right decision

The aim is to minimize the risks linked to α and β. If we 
accept H0, then α (the probability of rejecting the null hy-
pothesis when it is true) has to be important, and  β (the 
probability of accepting the null hypothesis when it is false) 
has to be low. If, on the contrary, we reject H0 it is because 
α is low and β important.

When H0 is true we are able to compute the risk, and α is 
equal to 1-p. However if H0 is false we cannot compute β, 
unless an alternative hypothesis H1  is known.

For a standard test we fix 1-p in advance. For example we 
can consider the test statistically significant at the threshold 
of 5%, and, according to the result found reject or accept 
the  hypothesis.  Another  method  is  to  calculate  the 
probabilities  α and β which correspond to  the value  x̄  
found with our sample. Then we measure the credibility of 
H0 and we choose whether or not to accept our hypothesis.

For example, let's imagine that we have several dice. All 
the  dice  are  unbiased  except  one  which  has  double  the 
chances of falling on six.  Unfortunately the rigged die is 
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mixed with the others and it does not bear any distinctive 
marks. We choose one die for a game night and we want to 
distinguish the biased die to be sure that the chosen die is 
well balanced.

The die is thrown 92 times :

3151353256243365313441354244652632465436616546
2241154636433165514444241456414316555146362534

For H0 we define a discrete random variable X. When the 
outcome  is  six  the  value  is  1.  All  other  outcomes  are 
recorded as 0 :

P(X=0)=5/6 and P(X=1)=1/6.

xi x0  = 0 x1 = 1

pi p0  = 5/6 p1 = 1/6

μ=p0 x0+ p1 x1

σ ²=p0(x0−μ)
2+ p1(x1−μ)

2

The mean of X is μ=1/6≃0.167  and the standard devia-
tion is σ=√5/6≃0.373 .

In our sample there are sixteen sixes and the sample mean 
is  x̄=16 /92≃0.174 .  Therefore  x̄−μ=t∞ .σ /√n  which 
gives:

 t∞=( x̄−μ)√n /σ≃0.187 .

The right tail of the Gauss distribution for values greater 
than 0.187 has an area of 0.43, showing that  α≃43% 7.

7 Here σ is known and n=92 is large enough to use the central limit 
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If H0 is false then H1 is true. If the alternative hypothesis H1 

was "the die is biased" (with no details about the way the 
die is loaded) we would have conducted a two-tailed test 
and for  α we would have to consider the two tails of the 
distribution. This scenario only requires a one-tailed test: if 
H0 were false,  the probability  of observing six would be 
doubled and we would observe greater values. 

For H1 we define the random variable Y with P(Y=0)=2/3 
and  P(Y=1)=1/3. The mean is  μ '=1/3≃0.333  and the 
standard deviation is σ '=√2/3≃0.471 .

Then x̄−μ '=t∞ ' .σ ' /√n  and t∞ '=(μ '− x̄ )√n /σ '≃3.24 .

The left tail of this distribution has an area of β≃0.06% .

We can therefore very comfortably accept the hypothesis 
that the chosen die is balanced. In the case of rejection we 
would have a 43% chance of making a mistake (we try to 
minimize  this  error  first,  classically  it  is  only  below the 
threshold of 5% that one begins to question the null hy-
pothesis). With regard to the alternative hypothesis, there is 

theorem.
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less than a 1 out of 1000 chance that we considered the die 
balanced while  the die  is  rigged (we also talk about  the 
power of the test : η=1-β).

Note  that  we  never  calculate  the  probability  that  a 
hypothesis  is  true  but  the  probability  to  reject  the 
hypothesis while it is true (error of the first kind).

In the legal framework an error of the first kind is made if 
an innocent person is convicted and second kind if a guilty 
person is  acquitted.  The jury is  asked to prove the guilt 
beyond a reasonable doubt and if the person is convicted α 
must  be  sufÏciently  small  [vi].  We try  to  minimize  the 
probability  to  condemn  an  innocent  person.  We  do  not 
directly consider the probability of being guilty, the person 
on trial is presumed innocent, a defendant is considered not 
guilty as long as his or her guilt is not proven (H0  : "the 
defendant is not guilty").

Exercises page 39 treat different cases for this test.
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 H. Chi-squared test

The Chi-squared test is an another hypothesis test that is 
simple to use. It tests a null hypothesis stating that the fre-
quency distribution of events  in a sample is consistent with 
a  theoretical  distribution.  We  consider  different  disjoint 
events that have a total probability of 1.

number of observa-
tions : 

... ...O
1

O
2

O
j

O
c

expected 
frequency : 

... ...E
1

E
2

E
j

E
c

We compute the following sum :

 2
=∑

j=1

c O j−E j
2

E j

 

Next we have a table on page 240 to estimate the probabil-
ity of rejecting the null hypothesis H0 when it is true. Ac-
cording to the value of  2 and the number of degrees of 
freedom we determine whether the assumption is accept-
able. The number of degrees of freedom is :

ddl=c−1  (number of categories minus one)

Let us illustrate  with  the experiments  carried out by the 
botanist  Mendel.  He  makes  crosses  between  plants.  He 
crosses peas with pink flowers. His theory implies that he 
must obtain 25% of peas with red flowers, 25% of peas 
with white flowers and 50% of peas with pink flowers. This 
result  is  derived from the random encounter  of gametes. 
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Imagine that he observes one thousand flowers with the fol-
lowing values: 27% white, 24% red and 49% roses. Should 
he continue to believe in his hypothesis?

Observed numbers : 270 240 490

Theoretical frequencies : 250 250 500

then

χ2
=
(270−250)2

250
+
(240−250)2

250
+
(490−500)2

500
≃2.2

and ddl=3−1=2 .

According to the table, there is more than a 30% chance 
that the assumption will be rejected when it is true.
We then decide to accept the hypothesis.  In general,  we 
take  a  critical  probability  α  of  5%,  below  which  it  is 
envisaged to reject the hypothesis.
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The test is easily generalized for a table :

Experimental frequencies : Theoretical frequencies :

(
O

11
O

12
... O

1 j
... O

1c

O21 O22 ... ... ... ...

... ... ... ... ... ...

Oi1 ... ... Oi j ... ...

... ... ... ... ... ...

Or1 ... ... ... ... Or c

) (
E

11
E

12
... E

1 j
... E

1c

E21 E22 ... ... ... ...

... ... ... ... ... ...

Ei1 ... ... Ei j ... ...

... ... ... ... ... ...

Er1 ... ... ... ... Erc

)
The ddl is dependent on the number of columns  c and of 
rows r :

ddl=(c−1)(r−1)

We compute the χ2 with a similar formula :

2=∑
i , j

Oi j−Ei j
2

E i j

Moreover, we use the same table to determine the validity 
of the hypothesis. 
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 I. The sources of the uncertainties

A  random  variable  has  a  small  uncertainty  if  the 
measurement  is  precise,  accurate  and  the  acquisition 
system has a good resolution.

Accuracy is ensured by the absence of systematic errors. 
There could be a bias that makes the measurement inaccu-
rate (even if the dispersion is low). Reading errors, absence 
of systematic control and corrections of influential factors, 
hypotheses in the modeling, etc. All biases must be identi-
fied and estimated in order to be added to the dispersion, so 
the system becomes accurate.

Precision pertains  to the  repeatability and  reproducibility 
of the measurements. The values of a precise system have 
low variability. The dispersion may be caused by accidental 
errors or by a random physical phenomenon (such as ra-
dioactivity). The experimenters by their own work, consci-
entious and according to a well defined and rational proto-
col, can minimize dispersion. The sources can be countless, 
but we will try to identify a maximum of sources in order 
to evaluate them.

The resolution of a sensor depends on the distance between 
the graduation marks, the type of vernier or the number of 
digits on the display screen. Sometimes other factors have 
to be added to the uncertainty due to discretization. You 
have  to  refer  to  the  technical  datasheet,  the  instruction 
guide or contact the manufacturer for a good knowledge of 
your measuring tool. Calibration of measuring instruments 
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can also be performed with a high-precision apparatus that 
is used as a reference.

The influence of these different sources of uncertainty can 
be illustrated by a target and arrows. The center of the tar-
get corresponds to the quantity to be measured and the ar-
rows represent the different measurements. If the arrows as 
a whole are not correctly centered, the accuracy is not as-
sured. The tightening of arrows represents precision. The 
distance between the circles on the target indicates the res-
olution. The value noted is that of the circle whose arrow is 
closest. The experimenter sees the arrows and the circles, 
however he does not know where is the center of the target. 
He holds the bow and his desire to be closer to the center 
of the target shows the quality and rigor of his work.

Measure accurate, precise and with a good resolution : 
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Measure accurate, with a poor precision and a low resolution : 

Measure precise but with a bias and a low resolution : 
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Measure biased, with low precision and resolution : 

The full standard deviation will be determined from the de-
viations of each source by adding the squares (due to the 
propagation of uncertainties explained in Chapter 2):

=1

22

23

2...
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 J. Exercises

Exercise 1 : Ages     Answers p171

Students of a class have the following ages : {18; 20; 
18; 19; 18; 18; 18; 17; 18; 19; 17; 19; 17; 21; 18}. De-
termine the mode, median, arithmetic mean, geomet-
ric  mean,  range,  standard  deviation,  root  mean 
square deviation, and mean deviation8.

Exercise 2 : Card game     Answers p171

We play with a 32-card standard deck. We randomly 
draw five cards.
a) Determine the probability of a four aces hand.
b) Determine the probability of having a flush (a flush 
is a poker hand containing five cards all of the same 
suit - hearts, spades, diamonds or clubs).

  Exercise 3 : Gravity field     Answers p171

Students  measure  the  Earth's  gravitational  field 
strength  g.  The  students  measure  the  following 
values at the laboratory : 6,20 ; 8,35 ; 13,00 ; 8,37 ; 
8,54 ; 9,67 ; 9,75 ; 10,66 (m/s²).
a) What comments can be made about these results?
b) Calculate the mean and standard deviation.
c) What is the mean uncertainty (95% confidence)?
Is the result consistent with the expected value?
d)  A  ninth  student  performs  a  new  measurement 
under  the  same experimental  conditions.  Evaluate 
the  probability  that  the  student  will  get  a  result 
between 8 and 12 m/s².

8 Absolute deviation mean= (∑|xi− x̄|)/n= (∑ √ (x i− x̄ )2 )/ n
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 Exercise 4 : Elevator   Answers p172

The maximum load of an elevator is 300 kg, and the 
total mass of the occupants is 280 ± 10 kg at σ. What 
is the probability of being overloaded?

Exercise 5 : Assignment    Answers p172

The following table represents Students' assignment 
grades (ranking on a 20 point scale) :

10 5 13 7 6 9 5 5 10 15 5 3

15 12 11 1 3 13 11 10 2 7 2 8

2 15 4 11 11 5 8 12 10 18 6

a) Calculate the mean and standard deviation.

b) Make a graph with the grades on the x-axis and 
the frequencies on the y-axis.

c) Make another diagram with the following  class 
intervals : [0, 1, 2], [3, 4, 5] ... , [18, 19, 20].
Which bar chart do you prefer?

Exercise 6 : Yahtzee    Answers p173

We play this game with five six-sided dice.

1) The five dice are drawn. What is the probability 
of having Yahtzee (all five dice the same).

2) What is the probability of having a sum smaller 
than ten?
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3) We do a series of throws and we get the following 
sums: 18, 15, 17, 22, 16, 12, 14, 22, 23, 14, 23, 14, 
18, 21, 12, 15, 18, 13, 15, 18, 17, 15, 17, 21, 25, 16, 
8, 15, 15, 13.

a) Calculate the mean and standard deviation.
b) What mean do you estimate with 95% 
confidence? Is it consistent with the theoretical 
value?
c) Make a graph with the values and their 
frequencies.
d) If we roll the dice again, what is the 
probability of the result being higher than 24?

 Exercise 7  : Elastic bands   Answers p174

An elastic bands manufacturer indicates that among 
a  thousand  elastics  sold,  on  average,  ten  are  not 
functional.  A  buyer  wants  to  test  the  delivered 
batches before accepting the delivery. He decides to 
refuse the delivery if the number of damaged elastic 
bands is too high and wants to have a less than 1% 
chance of  making a mistake by refuting the manu-
facturer's  indication.  The  buyer  picks  n elastics 
randomly.  How  many  damaged  elastics  should  the 
delivery contain for the client to refuse the delivery? 
Indicate  this  number  for  three  different  cases:  a 
sample of 1000, 200 and 50 elastic bands.
 

 Exercise 8 : Testing an insulating panel   

                          Answers p175

A manufacturer  specifies  a  thermal  conductivity  of 
0.039  W/m/K  for  a  insulation  board.  The  value  is 
certified  within  ±5%.  You  want  to  check  if  this  is 
true.  To do so, you take ten panels at random and 
measure their respective conductivity (mW.m-1.K-1) : 
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39.1 38.8 39.5 39.2 38.9 39.1 39.2 41.1 38.6 39.3

Are the values in agreement with those announced by 
the  manufacturer  (95%  confidence  on  the  given 
margin  is  consider)?  Could  he,  according  to  your 
results, announce another margin?

Exercise 9 : Coins     Answers p175

We perform a large number of coin tosses to test if 
the probabilities of landing heads or tails are equal. 
We  carry  out  the  experiment  with  three  different 
coins.  Are  they  balanced?  (Answers  with  95% 
confidence)

1) 42 tails and 58 heads.
2) 510 tails and 490 heads.
3) 420 tails and 580 heads.

Exercise 10 : Parity      Answers p176

Is  gender  equality  respected  in  both  chambers  and  The 
Supreme Court?

Male Female

Parliament 470 107

Senate 272 76

The Supreme Court 10 2
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Exercise 11 : Births     Answers p176

Let  us  test  the  following  hypothesis  :  births  in 
Sweden  are  distributed  uniformly  throughout  the 
year. Suppose we have a random sample of 88 births. 
The  results  are  grouped  according  to  seasons  of 
variable length : 27 births in the spring (April - June), 
20  in  the  summer  (July  /  August),  8  in  the  fall 
(September  /  October)  and  33  in  the  winter 
(November - March).

At a 5% critical level, can the hypothesis be rejected?

Now, we collect a very large sample : 23385, 14978, 
14106 and 35804. 

What is the conclusion?
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Exercise 12 : Gaussian distributions in the plane
                      and the space      Answers p176

One-dimensional Gaussian distribution :

Let  p  x  be  the  probability  density  function  of  the 
standard normal distribution.

1- Calculate and compare the means of x and ∣x∣. 
Which is equivalent to the mean distance from the 
origin? What do you think about σx and σ∣x∣?

2- Do a numerical calculation of P ∣x∣1 , P ∣x∣2  
and P ∣x∣3.

Two-dimensional Gaussian distribution :

Let  p (x , y)  be  a  two-dimensional  standard  normal 
density  with  p  x , y = p x  p  y  .  Where  p( x) and 
p ( y)  are one-dimensional standard normal densities.

Hints:

Let  consider  a  multiple  integral  of  a  two-variable 
continuous function. If we can separate the variables 
and the limits of integration are independent of x and 
y : 

 ∬ f x , y dxdy=∬ f  x  f  y dxdy=∫ f  x dx∫ f  y dy

Converting between polar and Cartesian coordinates :

2= x
2 y

2 and dxdy=2  d  (rotational symmetry)
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1- What is the expression of p  x , y   ?  Show that
p( x , y) satisfies the two necessary conditions for a 
probability distribution. 

2- By introducing the polar coordinates verify that the 
probability on all the plane is one. You will express
p  define as:

∬ p x , y dx dy=∫ p  d  .

p   is the density function with respect to ρ. 
p  d   corresponds to the probability of an event 
being between ρ and ρ+dρ.

What is the value of the mean ρ of the distance ρ from 
the point of origin? What is the standard deviation σρ 
for this distribution?

3- Calculate P   , P 2  and P 3 .

Three-dimensional Gaussian distribution :

Let p (x , y , z)  be a three-dimensional standard normal 
density  with  p  x , y , z= p x  p  y  p z  .  Where  p  x  ,
p  y   and p z   are one-dimensional standard normal 

densities.
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Hints:

Same properties for the multiple integral than in two 
dimensions.
 
Converting between spherical and Cartesian 
coordinates : r2=x

2 y
2z

2 and dx dydz=4 r
2
dr

(spherical symmetry)

1- What is the expression of p  x , y , z  ? Determine

p r define as :∭ p x , y , z dx dy dz=∫ p r dr .

p r is the density function with respect to r.
p r dr  corresponds to the probability of an event 
being between r and r+dr.

2- Verify that the probability on all the space is one.
3- What is the value of the mean r  and the standard 
deviation σr ?

4- Calculate P Rr  , P R2 r  and P R3r .

5- Compare the three cases.
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Gaussian 1D 2D 3D

Distance from 
the origin

        ∣x∣   9 ρ r

Mean  2

 2 2  2



Standard 
deviations

1 2 3

        P  (σ) 68.3% 1-1/e=63.2%      60.8%

P  (2σ) 95.4%           98.2%      99.3%

P  (3σ) 99.7%           99.988%      99.9994%

To check your calculations on a spreadsheet you can use the 
following functions:

On OpenOffice : 
• sum  of  a  selected  area  *  (ex.:  B43:B53)  : 

=SOMME(*) 
• value set to the cell B3 : $B$3
•  =MOYENNE(*)
• squared value : *^2
• square root :  *^(1/2)
• =ECARTYPE(*)
• Student's t-value 95% confidence and n=20 : 

=LOI.STUDENT.INVERSE(0,05;19)
• =TEST.KHIDEUX(*;**); * : experimental frequencies 

(ex.: B71:E72), ** : theoretical frequencies.

9 MATH : We  may  be  surprised  at  the  difference  of  the  one-dimensional 
expression  with  the  absolute  value,  it  is  only  a  question  of  definitions  in 
cylindrical and spherical coordinates. For example, ρ∈[0;+∞[ and θ∈[0;2π[, 
but we could also take ρ∈]-∞;+∞[ and θ∈[0;π[, then the mean of ρ would be 
zero and we would have considered its absolute value.
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II. CORRELATION AND 
INDEPENDENCE

In the previous chapter we looked at a singular ran-
dom variable X with n number of outcomes {xi}. Now we 
have several random quantities and a new index to distin-
guish them : Xj and its observations {xjk}. Xj is the j th quan-
tity and xjk is the kth observation of this quantity. We are in-
terested in the interactions between these different quanti-
ties.

To illustrate, we consider a sample of four individuals 
with three characteristics, of height  X1, weight  X2 and of 
birth month X3. A priori, we expect a correlation between 
height and weight : generally taller people also have heavier 
body mass (positive correlation). On the other hand, we can 
think that birth months have no effect on weight and height 
(X3 uncorrelated with X1 and X2).

 A. Correlation coefÏcient

The sample correlation coefÏcient r  is used to identify a 
linear relationship between two variables Xi and Xj :

r ij=
∑
k

[x i k−xix j k− x j]

∑
k

[ x i k− x i
2]⋅∑

k

[ x j k− x j
2]
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r varies between  -1 and  +1.  If ∣r∣=1 the variables  are 
perfectly  correlated  : r=1 is  verified  in  the  case  of  a 
perfect increasing linear relationship, and r=−1  in the 
case of  a perfect  decreasing linear  correlation.  If r=0 , 
the variables are uncorrelated and independents.

Calculus of r12 ,r13  and r23 :

X1 

(cm)
X2 

(kg)
X3 x1− x1 x 2− x 2 x3− x3  x1− x1

2

1 160 64 4 -15 -11 -2 225

2 170 66 8 -5 -9 2 25

3 180 84 9 5 9 3 25

4 190 86 3 15 11 -3 225

x 175 75 6 Σ= 500

and :

 x2− x2
2  x3−x3

2  x1−x1

. x2− x2

 x1−x1

. x3−x3

 x2−x2

. x3−x3

121 4 165 30 22

81 4 45 -10 -18

81 9 45 15 27

121 9 165 -45 -33

404 26 420 -10 -2
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then : r12=
420

√500√404
≃0.93 , r13≃−0.09 and

r23≃−0.02 .
r12 is close to +1, so we have a strong positive correlation. 
r13 and r23 are close to zero and therefore: X3 is independent 
of X1 and X2 :

Examples of data sets :
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Examples  7,  9  and  10  illustrate  a  strong  correlation 
between two variables. Yet the correlation coefÏcient is not 
as close to -1 or +1 as we could imagine, it is even zero in 
example 9. This is due to the fact that the correlations are 
not linear.

There  may  be  saturation  phenomena  (example  10)  or 
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threshold effect (a product may be beneficial at low dose 
and harmful at higher doses - example 9). To prevent these 
phenomena from misrepresenting the data, it is important 
to carefully consider the relevance of the variables chosen 
before starting a statistical study.
Another example:  if  we study the volume  V of different 
objects  according  to  their  size  T,  we  find  a  positive 
correlation.  But  the  correlation  will  be  much  stronger 
between V and X = T 3 (graphs 7 and 8).

The  fact  that  two  variables  are  correlated  does  not 
necessarily  imply  a  causal  relationship  between  the  two 
variables  (the  variation  of  one  variable  leads  to  the 
variation of the other). Rather than the variables effecting 
each other, the change may be attributable to a common 
external cause.
For example, it can be assumed that there is a correlation 
between the consumption of sunscreen and of ice cream. 
There is  obviously no causal  link between the two but a 
common cause i.e. the weather.
A physics study can show a causality, not a statistical one.
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 B. Propagation of uncertainties formula

 Consider a bucket filled with a million grains of sand. 
The mass of a grain is 10 mg with an uncertainty of 1mg. 
What is the mass of sand contained in the bucket?

1) Propagation of standard deviations formula 

As a general approach, let f be a function of p independent 
variables:

f  x
1
, x

2
, ... , x

j
, ... , x

p


Each of these random variables is associated a mean value
x j and a standard deviation  j

.

What are the values of  f  and  f  ?

Statistics give the answer and demonstrates the propagation 
formula of the standard deviations:

  

  10

10 We obtained the variance formula by replacing σ2 by V.
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σ f

2=∑
j=1

p

[( ∂ f

∂ x j

)
2

σ j

2]



2) Uncertainty calculations

For the uncertainties (defined on page 13) we also have a 

propagation formula:

The uncertainty propagation formula is not as exact as for 
standard deviations, but this formula is very practical and 
often very close to the exact result.

Considering our bucket:  

with

where we call  M the total mass of sand in the bucket, mj 

the mass of each grain and p the number of grains.

∂M /∂m j=∂m1/∂m j...∂m j /∂m j...∂m p/∂m j

∂M /∂m j=0...1...0=1

(Calculations of partial derivatives are explained on page 167)
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 f
2=∑

j=1

p

[ ∂ f

∂ x j


2

 x j

2]

M m1 , m2 ,... ,m j ,... ,mp

M=∑
j=1

p

m j

 M
2=∑

j=1

p

∂ M /∂ m j 
2
 m j

2



             then

and  M 2= p⋅ m2 with m= m j whatever j.

Finally :    ΔM=√ p⋅Δm=√1000000×0.001 g .

The bucket weighs 10 kilograms with an accuracy to the 

gram.  The  precision  on  the  mass  of  the  bucket  is  thus 

0.01%.  Naively,  we  might  have  thought  that  the  overall 

uncertainty  on  the  bucket  mass  was  the  sum  of  the 

uncertainties  of  each  grain.  We  would  then  have  an 

absolute uncertainty of 1 kilogram and a relative of 10%, 

which is very different from reality and would ignore the 

compensations.

Here the propagation formula is very precise because we 

have a very large number of grains. It is even exact, from 

the small numbers, if the distribution of the mass of the 

grains is Gaussian11.

11 MATH : A  linear  combination  of  Gaussian  quantities  is  itself 
Gaussian  (applies  here  to  a  sum).  And  in  the  propagation  of 
uncertainties  formula,  if  f and  the  xi have  the  same  kind  of 
probability distribution, the formula is exact like this one with the 
standard deviations.
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Δ M
2=(∑

j=1

p

1
2) Δm

2



In practice, there are multiple common ways to calculate 

uncertainties'  propagation,  depending  on  the  situation, 

given below:

• For  sums  or  differences  we  add  absolute 

uncertainties squared:

For example if d=x2-x1 with Δx2=Δx1=1cm then 

         Δd≃1.4cm .

• For  products  or  quotients  we  add  relative 

uncertainties squared:

For example if R=U/I with U and I with a precision of

        1% then R is known with a precision of 1.4%.

In more  complex cases,  the partial  derivative  calculation 

must be performed explicitly.

Alternatively,  using  a  random  number  generator  or 
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 f
2=∑

j=1

p

 x j

2

 f

f 
2

=∑
j=1

p

 x j

x j


2



uncorrelated packets approximately Gaussian, it is possible 

to do a numerical calculation. 

The  latter  method  is  illustrated  in  Exercise  2  of  this 

chapter.  A  spreadsheet  can  do  the  calculations  auto-

matically  (for  example  see  on  sheet  4  of  the  file 

IncertitudesLibres on www.incertitudes.fr).

There  are  also  methods  which  give  general  ideas  on 

uncertainty. They develop a general impression at the risk 

of reliability. 

For example as we add the uncertainties squared, we can 

anticipate that  the largest uncertainty will  quickly prevail 

over the others. Consider the example of  R=U/I, if  U is 

known with an uncertainty of 1% and I of 0,1% then R is 

known with an uncertainty of 1,005%≃1%, we can ignore 

the uncertainty of I.

For  addition  and  subtraction,  it  is  sometimes  considered 

that the parameter with the last significant figure the less 

precise indicates the precision of the last significant figure 

of the result. 

Yet on our example calculation of the mass of the sand-

filled bucket, it does not work. Since the mass of a grain is 

m = 10 mg but the mass of the bucket M is known to the 
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gram and not to the milligram!

For multiplication and division, it is sometimes considered 

that  the parameter  with the lowest  number of  significant 

figures  indicates  the  result's  number  of  significant  digits, 

but here too one must be careful.

As a simple illustration, if  H=2h with h=5,00m (h known 

within a cm), what is the value of H ? According to the rule 

below,  H would  be  known  with  three  significant  digits: 

H=10,0m. H would only be known to 10cm, it goes without 

saying that it is closer the cm ...

While these tricks serve to aid the calculations, they are not 

without their pitfalls and must used with caution.
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 C. Linear regression

We have two correlated random variables,  X and  Y, 
and are in need of an approach for modeling the relation-
ship between them.  The outcomes generate a cloud of data 
in the plane y(x) and we want to determine the best afÏne 
function y=axb  that fit the observations. For example, 
what  is  the  most  appropriate  relationship  between  the 
height X and the weight Y in our initial example?

What are the uncertainties Δa and Δb ?

1) Principle and formulas

We choose  the  least  squares  method:  this  method mini-
mizes the sum of squared residuals.

The set of dots is denoted  M ix i , yi . For xi given, the es-
timated value of y is: y i=a x ib .

59

x

^

^

y

Mi
i

i

y

x

i
ŷ
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We have to minimize the following quantity:

∑ d
2=∑

i

 y i− y i
2

We differentiate this quantity with respect to a and b, and 
we set  the derivatives equal to 0. We then have the best 
straight line and can obtain the following equations:

∑
i

 y i−a x i−bx i=0    and   ∑
i

 y i−a x i−b=0 .

This is equivalent to

 a= x y−x y

x
2−x

2       and      b=y−ax .

We call ei the residuals: y i= ŷ i+e i .

we find the following different standard deviations 12: 

• for the residuals

• for the slope   sa=
sr

√∑
i

(x i− x̄ )2
 

• for the y-intercept

12 Demonstrations p99.
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sr=∑i e i

2

n−2

sb=sr ∑ x i

2

n∑ x i−x 
2



Then  a=t n−2 sa and  b=t n−2 sb .

tn-2 : Student's t-value for n-2 degrees of freedom.

You are now able to carry out all calculations.
Let's do the calculations for weight in relation to height:

 x y=160x64170x66180x84190x86/4

x2=160
2170

2180
2190

2/4

a=(13230−175 x75)/(30750−175
2)=0.84 and

b=75−0.84 x175=−72

sr=√[(64−(0.84 x 160−72))2+(−4.8)2+4.82+(−1.6)2]/2≃5.06

sa≃5.06 /√(160−175)2+(−5)2+5
2+15

2≃0.226

Δa≃2.92 x0.226≃0.66 with a 90% confidence

sb≃5.06√(160
2+170

2+180
2+190

2)/[4 (15
2+5

2+25+225)]≃39.7

Δb≃2.92 x39.7≃116 with a 90% confidence

then: Height=(0.84±0.66)Weight−(72±116 )

                                               with a 90% confidence.

Here, the formula is very imprecise, which is unsurprising 
given the small number of points and the dispersion of the 
data.  However, the method of calculation is now explicit 
and comprehensible.

In the graph that follows we have:

• In the middle, the interpolated straight line repre-
sents the best balance between the points above and 
below this line.
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• The dotted lines represent the two extreme lines (
y=amin xbmax and y=amax x+bmin

).

• The first curves represent the estimated values for y. 
It is the mean confidence interval of yo correspond-
ing to xo :

For  example  if  xo=175  cm we  can  calculate 
yo=75.0±7.4 kg. Also we can obtain an estimation 
out of the interval,  for example if  xo=195 cm we 
obtain yo=92±15 kg.
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 yo=t n−2 sr 1

n


xo−x
2

∑ x i−x 
2



• The outer curves represent a  prediction for a new 
measurement. Prediction interval for an observation 
yo :

For example, if the height equals 175 cm there is a 
90% chance of their mass being between 58 and 92 
kg (generally 90% of the data are inside the curves 
and 10% outside).

2) Absolute zero measurement

We  study  a  gas  en-
closed in a rigid container 
of  constant  volume.  We 
have  sensors  to  measure 
its  temperature  and  pres-
sure. Initially the gas is at 
ambient  temperature  and 
pressure.  Then  we  im-
merse the whole container 
in hot water  and measure 
the changes  over time1 :

1 This experiment was realized on Tuesday 17 October 2006  
in Bourges by M. ROUAUD and O. LEROY at the Lycée Alain-
Fournier (France).
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 yo=t n−2 sr 1

n


xo−x
2

∑  xi−x 
2
1



time 10h
15

10h
30

10h
40

10h
55

not 
noted

not 
noted

12h

temperature 
ϴ (°C)

19.8 52.9 47.8 42.4 36.2 33.5 30.2

pressure
P (hPa)

1013 1130 1112 1093 1072 1061 1049

We  assume  that  the  gas  obeys  the  ideal  gas  law 
PV=n RT=n Rϴ−ϴ0K  . Plotting  ϴ(P) we can obtain 

a temperature of absolute zero : the y-intercept give ϴ0K.

The  regression  is  good  (r=0.99991)  but  the  measured 
points are far from absolute zero. By extension we obtain 
with a 95% confidence:

Θ0K=−266.0±4.8 °C
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We know that absolute zero is -273.15 °C, therefore this is 
not consistent. We can therefore assume that there is a bias 
and  that  we  have  not  considered  all  the  sources  of 
uncertainties.

3) Regression with uncertainties on the data  

The  measuring  instruments  are  not  perfect  and  the 
manuals indicate the precision for each. The uncertainties 
are  1%  for  the  pressure  sensor  and  1°C  for  the 
thermometer. We thus have an uncertainty on x and y :

 M ix i± x i , yi± yi

Now both  the  dependent  and  independent  variables 
have  uncertainties  which  contribute  to  the  weighting 
factors. Let wi be the weights. In an experimental situation 
the  weights  are  frequently  not  equal.  The  linear  least-
squared fit requires the minimization of :

∑
i

wi e i
2     with     w i=

1

 y i
2a x i

2

The problem is solved iteratively because the weights 
depend on the slope. We initially put an estimated value of 
a, then the value of a obtained replaces it until the equality 
of the values.
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We  obtain:  0K=−266±35 °C with  the  same  con-
fidence on the uncertainties of  xi and  yi. The value is now 
correct.  The  main  sources  of  uncertainties  seem  to  be 
included.

We could also consider the modeling uncertainty induced 
by  the  ideal  gas  hypothesis,  but  under  the  experimental 
conditions of this experiment, the model provides a good 
approximation.  This  source  of  uncertainty  is  negligible 
compared to the others uncertainties considered here. The 
use of a real gas model (like Van der Waals equation of 
state) would demonstrate this.
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Formulas  [i] :

S
2=∑

i

wi [ y i−a xib]2

∂S
∂b

2

=0 and
∂S
∂a

2

=0

leads to

b =
∑ wi y i ∑ w i xi

2 − ∑ wi xi ∑ w i xi yi


and

a =
∑ wi ∑ wi xi yi − ∑ wi xi ∑ w i yi



with

 = ∑ wi ∑ wi xi
2
− ∑ wi xi 

2

then

 b = ∑ w
i
x
i

2



and

 a = ∑ wi


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4) Linearization

In  many  cases  we  can  go  back  to  a  linear  model  (i.e. 
y=a xb ). Here are some examples below:

y= x


x , y ,0

y '=a x'b with
y '=ln  y  x '=ln  x  and

=a =e
b and

 = a  = b

y= e
 x x ,0 y '=ln  y  x '=x

y=
1

 x
y '=

1

y

(logistic 
distri-
bution)

y '=ln 
y

1− y
 y '= x

(Pareto 
distri-
bution)

y '=ln 1−y  x '=ln  x 

=−a =e
−
b

a

   (Weibull distribution)

y '=ln ln  1

1− y


x '=ln  x  =a =e
−
b

a

y=e
 x no linear model

y=
 x

 x no linear model

y= x x 2 no linear model as y(x)
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y=
e
 x

1e
 x

y=1−x 


y=1−e
− x 





5) Comparison of methods

In all the regression methods we consider, we are interested 
in  the  variability  of  y  to  x fixed (the  opposite  approach 
would yield equivalent results).

For a given xi we have a yi  and its standard deviation σyi.

a) Summary

 1- Simple linear regression

y1=8.3   y1=17.3   y1=18.3   y1=27.3   y1=28.3   y1=37.3  y1=38.3 

Case 1 :  a=5    b=5   sr=2.34   sa=0.443   and   sb=1.98

Simple regression does not mean that the data has no un-
certainties. The uncertainties are unknown and we estimate 
them with the data itself. The uncertainties are considered 
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constant whatever regardless of  yi. The uncertainty corre-
sponds to the standard deviation of yi with respect to the es-
timated line :

s yi=s y=sr=∑i  yi− yi 
2

n−2
 

sa=
sr

∑
i

 xi−x
2

 
sb= x

2

∑  xi−x
2
sr

2- Regression with constant standard deviation sy:  

Case 2 :  a=5     b=5     sy=2.55     sa=0.482      sb=2.16

In this case the syi are equal and known : s yi=s y  and

sa=
s y

∑
i

xi−x 2

 
sb= x

2

∑ xi−x 
2
s y
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If the straight line does not pass through the error bars, it 
can  be assumed that  all  sources  of  uncertainty  have not 
been calculated. It is necessary either to integrate them into 
sy, or to apply the previous method.

3- Regression with standard deviation  sy:

sy1=4    sy2=3.5    sy3=3    sy4=2.5    sy5=2    sy6=1.5    sy7=1

Case 3 :  a=4.67     b=6.51     sa=0.482      sb=2.16

The  syi are known. We can apply the propagation formula 
of the standard deviations:

sa
2=∑

i
 ∂ a∂ y i


2

s y i

2
   and   sb

2=∑
i
 ∂ b∂ y i


2

s y i

2

The formulas' results are exact and help us to find the ex-
pressions of the previous cases. Also in this case we can 
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use the following estimates:

 a=
1

∑ w i

1

 x2−x
2    b= 1

∑w i  x
2

x
2−x2

  w i=
1

 yi

2

4- Regression with standard deviation sy and sx

sy1=4    sy2=3.5    sy3=3    sy4=2.5    sy5=2    sy6=1.5    sy7=1

sx1=0.1   sx2=0.2   sx3=0.3   sx4=0.4   sx5=0.5   sx6=0.6   sx7=0.7

s1=4.0    s2=3.6    s3=3.4    s4=3.2    s5=3.2    s6=3.4    s7=3.6

Case 4 :  a=4.98     b=5.14     sa=0.695      sb=3.16

But if xi is assumed fixed, we transfer the dispersion

on  yi :    s yiTotal
2=si

2=s y i

2a2 s x i

2

Everything happens as if only yi had standard deviations si. 
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Hence the formulas :

sa
2=∑

i
 ∂ a∂ y i


2

si
2

   and   sb
2=∑

i
 ∂ b∂ y i


2

si
2

The derivatives  are difÏcult  to  calculate  (the weights  de-
pend on  a), but we can easily evaluate them numerically. 
Also we commonly use the following estimates:

 a = ∑ wi


    b = ∑ wi xi

2


   w i=

1


yi

2a
2

xi

2

b) Discussion

Case 5 :  a=5     b=5     sa=0.696      sb=3.16

Uncertainties in this case can come from measuring instru-
ments. The dispersion of the first case on page 69 can come 
from accidental errors linked to the experiment or from a 
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fundamentally random phenomenon.

We would like that the fourth case on page 72 includes all 
the sources of uncertainty of the cases 1 and 5 :

sa1
≃0.443   and  sa5

≃0.696    but   sa4
≃0.695

Using the conventional formulas, we get the impression that 
the dispersion around the regression line is not included.  In 
order to get  the correct  dispersion around the regression 
line, we perform the direct calculation with the propagation 
formula and I propose the small variations method:

sa
2=∑

i  ∂a∂ yi 
2

si
2

and  ∂a∂ y
j
= lim

 y j0   a

 y
j


Where yi ≠j are kept constant: y
j
 y

j
a a

Δyj   is a small variation with respect of yj , if Δyj becomes 

smaller,  a

 y
j

 stays constant (definition of the derivative).

We try to find the result for sa 5 :  we replace y1=10  with 
y1=10.001  and then from  a=5  we have after iteration 

a=4.999907 then 
Δa
Δ y 1

≃−0.093 .

We return  y1= 10 and repeat the procedure for y2 by re-
placing it with 15.001. We obtain the following results:
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j=1 j=2 j=3 j=4 j=5 j=6 j=7

∂a
∂ y

j

-0.093 -0.078 -0.049 -0.006 0.041 0.080 0.105

We  find  sa5
≃0.696 ,  the  same  result  than  the  previous 

method.

Let's do the same for sa 4 : 

j=1 j=2 j=3 j=4 j=5 j=6 j=7

∂a
∂ y j

-0.096 -0.080 -0.050 -0.007 0.081 0.122 0.147

We then  find that  sa4
≃0.786 .  The result  is  significantly 

different from the classical estimate and now seems to in-
corporate all the sources of uncertainty.

In the exercise Standard deviation proportional to y on page 
100 we study a particular case where we carry out the di-
rect analytical calculation. The comparison can thus be ex-
tended.
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 D. Nonlinear regression

We generalize  the  weighted  least  squares  method in  the 
nonlinear case. The function is nonlinear with respect to x 
and also nonlinear with respect to the parameters. Although 
multiple regression has similar developments, it is not dealt 
with in this book [x].

1) Principle

We compare y i  to the value f (xi)  given by the function 

sought:  y i−f (x i) . The weight assigned to  ( y i−f (x i))
2

 
is inversely proportional to the variance of y i−f (x i) .

The quantities x i  and y i  are independent13 from where:

13 Talking about independence between two variables as we look for a 
functional relationship between them may seem illogical. We refer 
here to the experimental determination of each quantity which is 
independent (in the sense of uncorrelated uncertainties).
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V  y i− f x i=V  y iV  f x i

By applying the variance propagation formula again:

V  f x i= f ' xi 
2
V x i

into   S2=∑
i

w i y i− f  x i
2  

with   w i=
1

 y
i

2 f '  x i
2 x

i

2
   14

Then ∂S
2

∂ak

=0  allows to determine the parameters ak of our 

function  (by  an  analytical  computation  or  a  numerical 
resolution).
Each time we can return to a system of linear equations of 
the form HA=B, with H a square matrix and A the vector 
associated with the parameters. Then A=H-1B, where H-1 is 
the inverse matrix of H.

The  parameters  uncertainties  are  given  by  the  diagonal 
terms of the matrix H-1 :
 ak

2=H−1kk r

2  where   r

2  is the residual variance with 

respect to the estimated curve.

When there are no uncertainties on the data, the standard 
deviation of the residuals with p parameters are written:

14 S2 is  also called  χ2.  If we assume the distributions Gaussian, the 
standard  deviations  can  be  replaced  by  the  uncertainties  using 
Student's t-values.
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sr=∑  yi− f xi 
2

n− p

When wi depends on the parameters we iterate the method 
until  we can  consider  the  weights  to  be  constant.  If  we 
know  the  standard  deviations  of  the  data,  the  standard 
deviations  of  the  parameters  can  be  computed  with  the 
propagation formula,  or  they  can  be estimated  using the 
same procedure used for linear regression with error bars 
on page 67.

2) Polynomial regression

In that case:

 f x =a0a1 xa2 x
2...amx

m=∑
i=0

m

a i x
i

This function is non-linear with respect to x and linear with 
respect to the parameters.

Let  us  illustrate  with  the example  of  Cauchy's  equation. 
This equation explains the phenomenon of light dispersion. 
It is an empirical relationship between the refractive index 
and wavelength:

n =a0
a1

2

a2

 4

with the following data:

λ(μm) 0.6157 0.5892 0.5685 0.5152 0.4981

n 1.71276 1.71578 1.71852 1.72716 1.73060
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The uncertainties on λ and n are initially neglected. What 
are the values and the uncertainties of a0, a1 and a2?

We have the following parabolic regression:

f (x)=a0+a1 x+a2 x
2     with    f =n ,   x=1 /2  .

S
2=∑  y i−a0−a1 x i−a2 x i

22    and 

we obtain: { y−ao−a1x−a2 x
2=0

x y−ao x−a
1
x

2−a
2
x

3=0

x
2
y−ao x

2−a1 x
3−a2 x

4=0

then HA=B with:

H= 1 x x
2

x x
2

x
3

x
2

x
3

x
4 ,  A=a0

a1

a2
  and   B= y

x y

x
2
y
 .

With a spreadsheet we can easily do the calculations:

H≃( 1 3.3 11

3.3 11 38

11 38 135
) , H

−1≃( 4150 −2530 376

−2530 1546 −230

376 −230 34.3
) , 

B≃(1.7

5.7

19
)   then  A=H

−1
B≃(1.68129

0.01135

0.00022
) .

For the uncertainties:

 ak=H−1
kk t n−3 sr   with sr=∑  yi− f xi 

2

n−3
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sr=1.87⨉10-5 and with 95% confidence tn-3=4.30
then

a0=1.6813±0.0017 ,     a1=(1.13±0.10)⨉10-2 μm2

 and   a2=(2.2±1.5)⨉10-4 μm4 

Now, if  we take  the  uncertainty  Δn=0.00004 with  95% 
confidence, we  have  an  uncertainty  on  y but  not  on  x. 
Therefore  the  weights  are  constant:  w i=w=1/ n

2 .  We 
obtain the same system of equations and we have the same 
results for H, H-1 B and A.
Here, in a similar way to the linear regression with error 
bars,  we  can  estimate  the  dispersion  of  the  residues  by 

1/√wi  :

 Δak=√ (H
−1)kk

∑ wi

      then

a0=1.6813±0.0012 ,     a1=(1.14±0.07)⨉10-2 μm2

 and   a2=(2.2±1.0)⨉10-4 μm4 

With all the uncertainties, Δn=0.00004, Δλ=0.005μm and 
Δx=2Δλ/λ3, the weights depend on the observations.  We 
nevertheless  arrive  at  the  same  system  of  equations  by 
considering  the  weights  on  an iteration constant,  and  we 
compute H, H-1, B, and A with estimated parameters.
To  calculate  the  means,  we  use  the  expression  of  the 
following weight:

w i=
1

Δn2+(a1+2a2 x i)
2Δ x i

2
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We thus  obtain  a  first  expression  of  the  parameters.  To 
iterate,  we  replace  the  previously  used  estimated 
parameters with these new parameters. We iterate as much 
as necessary to obtain a consistent value. Convergence is 
often very rapid:

Iteration a0 a1 a2

Estimated 1.5 0.005 0.0001

1 1.681282848208 0.011350379724 0.000219632215

2 1.681269875466 0.011358254795 0.000218466771

...

Also here we consider:  ak= H
−1kk

∑ wi

 then

a0=1.6813±0.0013 ,     a1=(1.14±0.08)⨉10-2 μm2

 and   a2=(2.2±1.2)⨉10-4 μm4 

3) Nonlinear regression

We will start from  p parameters  ak estimated and use an 
iteration  method.  On  each  iteration,  the  weights  will  be 
considered constant and the function will be linearized for 
each of n points on the set of parameters.
The function depends on the xi and the parameters ak.

Then we have  f i=f ( xi ;ak) .
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S
2=∑

i

wi  yi− f i
2    and   

∂S2

∂ak

=−2∑
i=1

n

wi

∂ f
∂ak

( yi−f i)=0

The first  estimated  parameters  are  noted  a0  k.  Following 
parameters will be noted  aj  k for the  jth iteration. We will 
carry out a linearization with a small variation δa0 k around 
a0 k 15.

Let  a=a1,
... ,ak , ... , a p  and a=a1, ... ,ak , ... , a p  :

f (xi ; a⃗0+δ⃗a0)=f (x i; a⃗0)+∑
l=1

p

δ a0 l(∂ f (x i; a⃗)

∂al
)
a

0l

 or by reducing the notations :

  f i= f 0, i∑
l
 ∂ f

∂a l


0, i

 a0 l
 

then   ∑
i

wi

∂ f

∂ak

 yi− f
0, i−∑

l ∂ f

∂ al 0,i

a
0l =0

and   ∑
i

wi

∂ f

∂ak

 yi− f 0, i=∑
i , l

w i

∂ f

∂ak

∂ f

∂al
 a0 l .

We set  H k , l=∑
i

w i  ∂ f

∂a
k
i  ∂ f

∂a
l
i=H l , k  ,

Bk=∑
i

wi

∂ f

∂ak

 yi− f 0,i    and  Al=a0l .

from  where  again  HA=B and  A=H-1B.  We  iterate  until 

15  MATH : We generalize the notion of derivative by adding the 
variations according to all the parameters: 

f  x0≃ f  x0 f '  xx0
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variation  on  the  parameters  is  negligible  and  the  values 
converge.  
Here also, we use:  ak

2=H−1
kk


r

2
.

Let us illustrate with a biological experiment, in which the 
relation between the concentration of the substrate [S] and 
the reaction rate in an enzymatic reaction is studied from 
data reported in the following table [ix] :

i 1 2 3 4 5 6 7

[S] 0.038 0.194 0.425 0.626 1.253 2.500 3.740

v 0.050 0.127 0.094 0.2122 0.2729 0.2665 0.3317

The model can be written as:

y=
 x

 x
 where  v=y  and  [S]=x. 

We start with the estimations α0=0.9 and β0=0.2

∂ f

∂
=

x

x
 ,   

∂ f

∂ 
=−

 x

 x2
 , H=H 11 H 12

H 21 H 22
  , 

A=    and    B=B1

B2
 .

In the absence of given uncertainties on xi and yi :

H 11=∑
i=1

7

( ∂ f∂α )
α

0
i
( ∂ f∂α )

α
0
i
=∑

i

( ∂ f∂α )
α

0
, i

2

=∑
i
( x

i

β0+xi )
2

,
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H 12=H 21=∑
i


0
xi

2

0xi 
3  and H 22=∑

i


0

2
xi

2

0 xi
4 .

B1=∑
i

xi

0x i

 y i− f 0,i   and B2=−∑
i


0
xi

0x i
2
 yi− f 0, i

with  f 0,i=


0
xi

 0 xi

We can now put everything into a spreadsheet, which 
produces:

H
11
≃3.81 ,  H 12

=H
21
≃−2.89 ,  H 22

≃3.70 ,

B
1
≃−2.33   et  B2

≃1.86 .

and also

H
−1≃(0.649 0.508

0.508 0.668)  then  A=H
−1
B≃(−0.567

0.0602 ) .

From  α1=α0  +δα0   and   β1=β0 +δβ0   we have the new 
estimated parameters:

α
1
≃0.9−0.567≃0.333   and   β1

≃0.2+0.06≃0.260

We repeat  the calculation from the start,  this  time using 
these values instead of  α0 and  β0 to iterate. We calculate 
new matrices and vectors  H,  H-1,  B and  A, and obtain  α2 
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and β2.
The results are shown in the following table:

Iterat° α β δα δβ S2

0.9 0.2 -0.57 0.060 1.4454965815

1 0.333 0.26 0.0101 0.166 0.0150720753

2 0.343 0.43 0.0150 0.103 0.0084583228

3 0.358 0.53 0.0040 0.024 0.0078643240

4 0.3614 0.554 0.0004 0.0024 0.0078441826

5 0.36180 0.5561 0.00003 0.00018 0.0078440067

6 0.36183 0.5563 0.000002 0.000013 0.0078440057

After enough iterations: H
−1≃(1.52 6.34

6.34 36.2)
Calculate the uncertainties on the parameters:

sr= S
2

n−2
 ,  Δα=√(H−1)11 tn−2sr≃√1.52.1 .48 .√0.00784

5

then  Δα≃0.07 ,  Δβ≃0.35  .

Eventually:   α=0.36±0.07   and   β=0.56±0.35 

with  80% confidence.
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The following graph shows the reaction rate as a function of substrate  
concentration. The squares are the experimental points, the solid line is  
the  optimal  curve  and  the  dotted  lines  are  the  two  extreme  curves 
f max ,min

 and  f min ,max .

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

To consider the uncertainties on the data we need to add 
weights. These are considered constant on each iteration. It 
will  be  necessary  to  calculate  the  derivative  of  f with 
respect  to  x which  is  present  in  the  expression  of  the 
weight.
For standard deviations on the set of data we can calculate 
the standard deviations on the parameters using methods 
described on page 69  for the linear regression.
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 E. Exercises 

Exercise 1 : Correlations     Answers p179

1-  We carry out nine experiments to obtain in each case 
three realizations of the quantities X1, X2 and X3:

a)  Determine  the  arithmetic  means  and  standard 
deviations  of  these  three  quantities  from  these 
samples.

b) Plot X2 as a function of X1. The same for X3(X1) and 
X3(X2).

c) Calculate the correlation coefficients r12, r13 and r23. 
What comments  can be we made from the results?

2- Same for the following data:

3- Same for the following data:

-1 2 -2 0 -2 2 1

-1 0 2 -2 0 2 -1

X
1

X
2

88

i= 1 2 3 4 5 6 7 8 9

-1 -1 0 0 0 1 1 1

0 -1 1 0 -1 1 0 -1

0 1 -1 0 1 -1 0 1

X
1

x
1
1 = -1

X
2

x
2
1 = 1

X
3

x
3
1 = -1

0 1 -1 2 0 -1 0 -2 1

1 2 -1 2 0 -2 -1 -2 1

X
1

X
2



Exercise 2 : Volumes      Answers p180

We fill four beakers with 100 mL of water each with a 
pipette.  To  test  the  pipette  and  know  the  precise 
quantity of water, we weigh to the nearest decigram 
and  obtain  the  following  results  for  the  different 
beakers in mL:

V1={100.1 , 100.0 , 99.9 , 100.0}

1- Calculate the mean and the standard deviation of 
V1.  Estimate the precision of the pipette with a 95% 
confidence.

We now fill two beakers and gather the contents of the 
two into one:

V = V1 + V2.
In  the  same  order  as  V1,  we  obtain  the  following 
measurements for V2:

V2={100.0 , 100.1 , 100.0 , 99.9}

For example, for the third measurement,  V1=99.9 mL  
and V2=100.0 mL.

2- Show that V1 and V2 are independent quantities.

3- Calculate the mean of V, its standard deviation and 
its uncertainty ∆V with 95% confidence.

4- Could you find this result with the uncertainty 
propagation formula?

(To improve the test it would take more measurements, but  
the principle remains the same, and the results remain valid  
because we have used the Student, considered decorrelated  
data and globally Gaussian packages. We should also take  
into account the uncertainties on the measures - resolution -  
in addition to their dispersion.)
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Exercise 3 : Trees    Answers p181

We want to measure the distance d between two trees. 
For this we have a stick of length one meter. From one 
tree  to  the  other,  we  place  the  stick  end  to  end  a 
hundred times. For each displacement, we estimate an 
uncertainty of 1 cm.

What is the uncertainty estimated on the value of d?

Exercise 4 : The two-position method

                    Answers p182

We measure the focal length f' of a convex lens using 
the two-position method (also called Bessel method or 
displacement method).
An illuminated object is set up in front of a lens and a 
focused  image  forms  on  a  screen.  The  distance  D 
between  the  object  and  the  screen  is  fixed.  When 
D>4f', there are two lens positions where the image is 
sharp.  The  distance  between  these  two  positions  is 
denoted d. We then have the focal length of the lens by 
the  relation  f'=(D²-d²)/4D.  We  measure  D=2000±10 
mm and d=536±20 mm.

What is the uncertainty on f' ?

Exercise 5 : Refractive index     Answers p184

We want  to measure the index of  refraction n2 of  a 
window  glass.  We  perform  the  experiment  of  the 
refraction of a laser beam. According to Snell's law of 
refraction n1.sin(i1)=n2.sin(i2), where ni are the indices 
of  the  materials  and  ii the  angles  of  incidence  and 
refraction. We get n1=nair=1, i1=30±1° and i2=20±2°.

Determine n2 with its uncertainty.
Exercise 6 : Cauchy's equation      Answers p185
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We  want  to  measure  the  variation  of  the  light 
index  n as  a  function  of  the  wavelength  λ in  a 
transparent material (phenomenon of dispersion).  To 
carry out the experiment we need a  prism, a sodium 
lamp and a goniometer. According the theory, in the 
visible  spectrum,  the   index  variation  n(λ) follows 
Cauchy's equation:

n =A B

2

The sodium  line spectrum is known. For each line of 
wavelength λi, the corresponding index n is calculated 
using the formula of the prism: 

ni=

sin  ADm ,i

2 
sin A2 

Dm is  the  minimal  deviation  angle.  A=60° is  the 
internal  angle  of  the  prism.  These  two  angles  are 
measured within 2' (1'=arc-minute and 1°=60').

We obtain the following values:

λ(nm) 615.7 589.2 568.5 515.2 498.1

Color red yellow green-yellow green blue-green

Dm 57° 49.5' 58° 9' 58° 28' 59° 26.5' 59° 50'

n 1.71276 1.71568 1.71852 1.72716 1.73060

1-  Determine  the  uncertainty  for  n (Δn is  assumed 
constant).
2-  Using  Cauchy's  equation  find  A, B and  their 
respective uncertainties.

91



What is the value of the regression coefficient r?

3- We hypothesize that plotting n as a function of 1/λ 
or 1/λ3, will produce a better alignment of the points.
We want to verify that the variation in  1/λ² is indeed 
the best of the polynomial relations. For this we take 
the form:

n =AB .

Propose a method for determining A, B and α.
We can verify the model because we have α with its 
uncertainty.

Exercise 7 : Wall     Answers p187

There is a wall with area S=72 m². The outside 
temperature  is  6°C  and the  internal  temperature  is 
maintained  at  18°C.  This  wall  is  50  cm  thick  and 
consists  of  ep=40 cm of  compressed  straw (thermal 
conductivity λp=45 mW/K/m) and ee=10 cm of coating 
(λe=200 mW/K/m). The values for λ, thicknesses, and 
the  temperature  are  rounded  to  within  10%,  the 
nearest cm and the nearest half degree respectively.

1- Determine the thermal resistance with its 
uncertainty of the straw for this wall (R.λ.S=e)

2- Repeat for the coating.

3- Taking into account that thermal resistances 
associate like electrical resistors in series, determine 
the total thermal resistance of the wall with its 
uncertainty.

4- What should be the minimum heating power of the 
house to compensate for the losses by the walls? 
(ΔT=R.Φ)
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Exercise 8 : Insulation and inertia    Answers p188

In a  low-energy  house,  the  thermal  resistances 
e/λ are  measured  per  square  meter. The  thermal 
resistances are 8 m².K/W for the roof,  4 m².K/W for 
walls  and floor,  and 1 m².K/W for door  and window 
frames. The R-values are known to the nearest 10%. 
The house area for the floor, the roof, the walls and the 
frames are 36 m², 54 m² , 82 m²  and 8 m² respectively.

1- The equivalent resistances of the roof, the walls, the 
floor and frames are in parallel. Determine the total 
thermal resistance (in K/W) with its uncertainty.

Outdoor and indoor temperatures are constant. 

2- What should be the minimum heating power of the 
house to keep the indoor temperature constant while 
offsetting the losses?

3-  We  switch  off  the  heating  and  measure  the 
temperature over time to obtain the following results:

t in hours 0 1 2 4 5 6 8 9 10

T in °C 18 16 14 12 11 10 9 9 8

Explain why the decay cannot be linear. We consider 
an exponential decay: T(t)=a.exp(-t/τ)+b . Calculate b, 
a and τ, with their uncertainties.

4- The house is insulated from the outside.  The lost 
heat  flux  corresponds  to  a  decrease  in  the  energy 
stored in the house. This inertia is due to the thermal 
capacity C of the materials (J/K).

a)  By reasoning on an infinitesimal time interval  dt, 
find the differential equation verified by T(t) and the 
expression of question 3.

b)  What  is  the  relationship  between  τ,  R  and  C? 
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Determine C and its uncertainty.

In question 3 we could also take into account measurement  
uncertainties:  time can  be considered as  perfectly  known 
and  temperature  is  measured  using  a  thermometer  with 
graduations all the Celsius degrees.
For simplicity we considered that the outside temperature  
remains  constant  (to  account  for  day/night  variations  we  
would  consider  sinusoidal  variations  and  a  harmonic  
approach).

Exercise 9 : Yield       Answers p191

Specific  quantities  of  fertilizer  are  spread  on 
fields and we obtain the following yields:

Fertilizer 
(kg/ha)

100 200 300 400 500 600 700

Yield 
(Quintal/ha)

41 44 53 63 66 65 78

1- Determine the regression line that passes through 
the scatterplot. Slope, intercept and uncertainties with 
a confidence of 95%.

2- For 550 kg/ha of fertilizer, estimate the yield.

3- Repeat the calculation without fertilizer.

4- If a farmer spreads 250 kg/ha of fertilizer, what is 
the probability  that  he will  get 40 to 60 quintals of 
grain?
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Exercise 10 : Study of a battery      Answers p193

To determine the open-circuit voltage E and the 
internal  resistor  r,  we  measure  for  the  battery 
different values of  U and I  with a voltmeter and an 
ammeter (U = E - r.I) :

range 
for U :

 unit : V
accuracy  ±0.05% ±0.003

U (V) 4.
731

4.
731

4.
730

4.
728

4.
724

4.
724

4.
722

4.
721

4.
719

4.
716

range 
for I :

unit : μA
accuracy 

±0.2% ±0.03

unit : mA
accuracy ±0.2% ±0.0003

I 92.
83

115.
45

152.
65

0.
2352

0.
4686

0.
5200

0.
5841

0.
6661

0.
7750

0.
9264

1- Without error bars: determine E±ΔE and r±Δr.

2-  Repeat  including  the  uncertainties  on  U  and  I 
indicated  in  the  instructions  of  the  multimeter 
manufacturer.

Exercise 11: Thin lens formula    Answers p195

We  want  to  measure  the  focal  length  f'  of  a 
converging lens. At point O, the lens  forms a sharp 
image at A' of an object at A. We measure OA, OA' and 
their  uncertainties  (are  included  all  the  sources  of 
uncertainty:  geometry,  focusing  and  modeling).  We 
consider that the lens verifies the thin lens formula:

1/OA' + 1/OA = 1/f'.

Determine f'  using a linear regression.  Table on the 
next page.
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Experimental Data (mm) :

OA OA'

635 5 150 15

530 5 160 17

496 5 164 15

440 5 172 18

350 5 191 20

280 5 214 25

210 5 292 28

150 5 730 102

ΔOA ΔOA'

Theory

Exercise 12 :

For simple regression, show that:

∑
i=1

n

 xi−x 
2
=n x

2
−x

2


Exercise 13 : 

For simple regression, show that we can also write:

 sb=sr 1

n
 x

2

∑  x i−x
2

.

Exercise 14 : 

For simple regression, show that:  b= x2 a .
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Exercise 15 : Asymptotes          Answers p198

For the simple regression, show that, above and below 
the  regression  line,  extreme  line,  confidence  and 
prediction curves, have the same asymptote when  xo 

becomes large.

Exercise 16 : Confidence Interval and Prediction 
Interval for Linear Regression with error bars
                             Answers p198

Regression with error bars

1-  Give  the  expressions  of  x and x² using  the  wi 

weights. Could you find a new expression of Δ with  x 
and x² (p67) ?

Analogy

2-  From the  confidence  and  prediction  intervals  for 
simple regression (p62 and following), use an analogy 
to determine the following formulas:

  Confidence:                       Prediction:

 yo=
1

n∑w i 1
 xo−x

2

x
2−x

2
    yo=

1

 n∑ w i 1n
 x o−x

2

x
2−x

2

3- Determine the y-distances to the regression line for 
extreme  lines,  confidence  curves,  and  prediction 
curves when xo becomes large.
In a previous exercise we showed that for the linear 
regression, the asymptotes are the same. By analogy 
what should we set so that it is the same in regression 
with bars of errors?

Show that we then have the following formulas:
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  Confidence:                       Prediction:

 y o=
1

∑ w i 1
 xo−x 

2

x
2−x

2
    y o=

1

∑ w i 2
x o−x 

2

x
2− x

2

The formulas obtained by analogy are thus empirical. 
Yet,  while  they  seem  experimentally  coherent,  they 
require confirmation by theoretical demonstration.

Confidence  and  prediction  curves  for  the  absolute  zero  
experiment: T (°C) as a function of P (hPa)

Exercise 17 :  Other expressions  Answers p200

For regression with error bars give the expression of 
a,  b,  Δa and  Δb as a function of  x,  y,  xy,  x² and  y². 
Compare with simple regression.
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Exercise 18 : Least squares method
                      Answers p201

Demonstrate  by  the  least  squares  method  the 
expressions of a and b:

 1- For simple linear regression.

 2- For linear regression with error bars. The Δxi and 
Δyi are considered small with respect to xi and yi.

Proof of the expressions of  Δa and  Δb for the simple 
regression:

Method 1 :

 1- Show that  a=∑
i

pi yi  with pi=
xi−x

∑ xi−x 
2

.

 2- Deduce from this formula of a its variance V(a) 16.

Method 2 :

Use the propagation of standard deviation formula.

For simple linear regression, is it possible to find a, b, 
Δa and  Δb using  the  generalized  regression  matrix 
method?

Exercise 19 : Expectation of a       Answers p203

For  linear  regression,  we  denote  α and  β as  the 
parameters of the population:  E(yi)=α xi+ β.
a and b are the estimated parameters from a sample:
yi=a xib

Show that we have an unbiased estimator for α, so 
E(a)=α.

16   MATH : E(X+Y) = E(X) + E(Y). If X and Y are two independent 
variables: V(X+Y) = V(X) + V(Y).
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Exercise 20 : Standard deviations
                      proportional to y        Answers p203

We consider the particular theoretical case where the 
standard  deviations  of  the  linear  regression  are 

proportional  to  y  :   y
i

=k y i .  This  case,  where  the 

relative uncertainties are constant,  is  experimentally 
common. We are interested in the slope a.

 1- Show that: a=
∑ 1

y2∑
x

y
−∑ x

y2∑
1

y

∑ 1

y
2∑

x
2

y
2
−∑ x

y
2 

2

 2- Express 
∂a
∂ y j

(long calculation).

 3- Calculate sa using the expressions found for the 
following two datasets:

xi 1 2 3 4 5 6 7

1 :  yi 10 15 20 25 30 35 40

2 :  yi 8.286 17.286 18.286 27.286 28.286 37.286 38.286

(We let k=0.1).

Find these results  again with the numerical  method 
(evaluation of the derivatives with the small variations 
method).

Compare the values obtained by the classical method.

Exercise 21 : Interpretation of 
                      the expression of  wi   Answers p205 

Graphically justify the position of  a in the expression 
of wi. 
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Non-linear regression

Exercise 22 : Decomposition into Gaussians 
                        Answers p206 

A  factory  manufactures  nails.  With  a  caliper,  we 
measure the size of 48 nails: 

Two machines manufacture the nails. The nails made 
by one of the machines are not exactly the same size. 
We assume that the size is distributed according to a 
Gaussian  distribution.  Determine  the  parameters  of 
the Gaussian distributions of the nails manufactured 
by  each  machine  (maximum,  mean  and  standard 
deviation).  How  many  nails  have  each  machine 
produced? 

To  check  your  correlation  calculations  you  can  use  the 
spreadsheet function of OOo :
COEFFICIENT.CORRELATION(*;**).
Courbes : Insertion>Diagramme...>XY(Dispersion)>etc.
For  matrix  calculations,  inversion  of  matrices  : 
INVERSEMAT(*), product of matrices : PRODUITMAT(*;**).

You  can  use  the  file  IncertitudesLibresOOo32.ods  on  the 
website www.incertitudes.fr to realize regressions. Sheet 2, 
simple regression and sheet 3 with error bars.
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III. PROBABILITY DISTRIBUTIONS

We list different laws of discrete and continuous prob-
abilities. We verify they are distributions of probability and 
we  give  their  expectation  μ=E(X ) and  variance 
V=E [(X−μ)2]. 

The  variance  can  also  be  calculated  with  the  formula 
V=E [X2]−E [X ]2  and then we have the standard devia-
tion σ=√V .

We can calculate other moments that allow us to de-
termine, for example, the symmetry and the flatness of the 
probability distribution.

Moments: μk=E(Xk )

Normalized moments are instructive because they charac-
terize the form of the distribution:

βk−2=E[ ( X−μσ )
k

] or βk−2=
μk

σk

β1 : Skewness (third standardized moment)

β2 : Kurtosis

We  also  consider  the  sum  of  independent  random 
variables:  Z=X+Y .
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 A. Discrete Random Variables

1) Binomial distribution

We consider the number of successes in a sequence of 
n identical and independent experiments. Each trial has two 
outcomes named success and failure ( Bernoulli trial). Each 
success  occurs  with  the  probability  p=P(S) .  The  two 
parameters are  n and  p and we write  B(n,p). We want to 
determine the probability to obtain exactly k successes out 
of  n trials. A path containing  k successes has  n-k failures 
and  its  probability  is  pk

q
n−k ,  where  q=1−p  is  the 

probability of a failure.
Then  we  have  to  count  the  number  of  paths  where  k 
successes occur, there are different ways of distributing  k 
successes in a sequence of n trials. n choice for the position 
of the first success,  n-1 for the second and  n+1-k for the 
kth success:
n(n−1)...(n+1−k )=n! /(n−k ) !  possibilities17.

After we divide by  k! to remove 
multiple  counts  (for  example 
S1S2F and S2S1F correspond to the 
same path). From where:

P(X=k ) = (nk ) p
k
q
n−k

with (nk )=
n !

(n−k) !k !
(often read aloud as « n choose k »)

and ∑
k=0

n

P(X=k)=1

17 n!, is said « n factorial » with n!=1×2×3. ..×n .
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we show that  E(X)=np   and  V (X )=npq .

The sum of two independent binomial laws of the same p is 
also a binomial law. The sum of a Bx(n1,p) and a BY(n2,p) is 
a Bz(n1+n2,p).

To determine the distribution of Z sum of X and Y

we use the following property for discrete distributions:

 P(Z=k )=∑
i

P([X=i]∩[Y=k−i ])

2) Geometric distribution

We consider  a random experiment with exactly two 
possible  outcomes  :  S="success"  and  F="failure"  ; 
p=P(S)  and  q=1−p=P(F) .  We repeat  independent 

trials until the first success. Let X be a random variable of 
the number of trials needed to get one success. We denote 
the distribution by G(p).

P(X=k )=q
k−1

p , ∑
k=1

∞

P(X=k)=1

 E(X)=1/ p   and  V (X )=q/ p2

⦁ Example: We have a box with two white balls and a black 
ball inside. The balls are indistinguishable to the touch. We 
draw a ball, if we get a black ball we stop, otherwise we 
return  the  ball  to  the  box  and  we  repeat.  What  is  the 
probability of drawing the first black ball in the third draw?
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Answer: P(X=3)=(2/3)2 1 /3=4 /27 .

⦁ Application: This distribution can be used like a discrete 
model of lifetime. For example, consider a cell which every 
day has a chance in ten to die. If it did not die the next day, 
its probability of dying the next day did not change: there is 
no aging18. Every day the cell can escape death and it can 
live forever. Rather than making a decision every day, we 
can decide his death every hour with a probability q ' of 
survival,  like  this  q ' 24=q  and  q '≃0.996 .  Or  even  a 
choice  every  second,  we  then  have  different  geometric 
distributions witch modelize the same reality with  p→0  
and q→1 .

From a discrete  distribution  we reach a  continuous  one. 
The elapsed time since the beginning of the experiment is 
t=kΔ t . 
Let's look at the cumulative distribution function:

18 The geometric distribution has a remarkable property, which is 
known as the memoryless property.
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P(X⩽k )=∑ q
k−1

p=∑ e
ln (1−p) .(k−1)

p≃∑ pe
−pk

We have used a Taylor series, indeed t≫Δ t  and k≫1 .

Then  P(X⩽k )→∫ f (t)dt ,  ∑ pe
− p

Δ t
t

→∫λ e−λ tdt  so, 

if we look at the limit, the geometric distribution becomes 
the exponential one with λ=p/Δ t . Here for our cell λ  is 
about 1.16⨉10-6 per second.

The sum of two independent geometric random variables 
G(p)  is a negative binomial distribution BN(2,p), rank for 
obtaining two successes. 

For a binomial distribution the number of trials is fixed and 
we look at the number of successes, in the case of the neg-
ative binomial distribution it is the opposite we are inter-
ested in the number of trials necessary to achieve a number 
of successes fixed in advance.  BN(r,p) is  the probability 
distribution of the rank of the r-th success19.

Then G(p) =BN(1,p).

3) Poisson distribution

The Poisson distribution expresses the probability of a 
given number of events occurring in a fixed interval. The 
events occur with a known frequency independent of the 

19  There is also another definition: number of failures preceding the r-
th success. The relations remain true by redefining the geometric 
distribution in the same way.
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time elapsed since the previous events20. If λ is the number 
of times the event occurs on average over a given interval 
then the probability that the event occurs k times over this 
time interval is:

P(X=k )=λk

k !
e
−λ

, ∑
k=0

∞

P(X=k)=1

 E(X)=λ   and  V (X )=λ

• Example:  During  the  Perseids  meteor  shower  of 
August 1911 the hourly rate of shooting stars was 
50.  What  was the probability  of  seeing exactly 7 
meteors in 12 minutes? 

            

             Answer:

  λ=
12

60
50=10   and P(X=7)=

10
7

7 !
e
−10≃9%

The sum of two independent Poisson distributions  PX(λ1) 

and PY(λ2) is a Poisson distribution PZ(λ1+λ2).

20 or space traveled.

109



 B. Continuous Random Variables

1) Uniform distribution

{
x<a : f (x)=0

a⩽x⩽b : f ( x)=
1

b−a

x>b : f (x)=0

 E(X)=
a+b

2
   and   V (X )=

(b−a)2

12

To  determine  the  distribution  of Z sum  of  two 
continuous independent random variables X and Y we 
use a convolution:

f Z (x)=∫
−∞

+∞

f X( y ) f Y (x− y )dy

Consider the sum of two independent uniform distributions 
U(a,b). The integrand is nonzero if:

 a< y<b   and a<x− y<b then x−b< y< x−a
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If  2a<x<a+b   

then  f Z (x)=∫
a

x−a
1

(b−a)2
dy=

x−2a

(b−a)2

We obtain a triangular distribution:
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y
^

a b

x-b x-a
 If 2a<x<a+b :

y

^

a b

x-b x-a If a+b<x<2b :

{
x<2a : f Z(x)=0

2a⩽x<a+b : f Z(x)=
x−2a

(b−a)2

a+b⩽x⩽2b : f Z (x)=
2b−x

(b−a)2

x>2b : f Z(x)=0

x

f ^

^

2a 2ba+b



2) Exponential distribution

{t⩾0: f (t )=λ e
−λ t

t<0 : f (t)=0

  E(T )=
1

λ    et   V (T )=
1

λ2

The  exponential  distribution  satisfies  the  memoryless 
property:  P(T>b)=PT>a(T >a+b) .  This distribution  is 
widely used to model waiting times. It is also used to model 
lifetime  without  aging  :  like  the  lifetime  for  a  particle 
decay.

The mean life E(T )  and the half-life t1/2, P(T> t1 /2)=0.5

, are two different times.

The distribution of the sum of two independent exponential 
distributions is not an exponential distribution.

112

X

f
1.0

0.5

0.1

1.0 2.00

λ=1

λ=1/2



3) Normal distribution

The normal  or Gaussian distribution has previously been 
described page 20.

The  sum  of  two  independent  Gaussian  distributions 
NX(μ1,σ1

2) and NY(μ2,σ2
2) is  the  Gaussian  distribution 

NZ(μ1+μ2, σ1
2+σ2

2) .

4) Student's t-distribution

The t-distribution is express with the number of degrees of 
freedom k  and the gamma function (function described in 
the mathematical tools).

For k≥1 , f k (x)=
1

√k π

Γ( k+1

2 )
Γ( k2 )

1

(1+ x
2

k )
k +1

2

As the number of degrees of freedom grows, the t-distribu-
tion approaches the normal distribution N(0,1) :

lim
k→+∞

f k (x)=
1

√2π
e
− x

2

2

Variance: V k=
k

k−2
 if k≥3 .

Kurtosis: βk=3
k−2

k−4
 if k≥5 .
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In exercises  the expressions  of  the first  Students  are ex-

pressed, we show that ∫
−∞

+∞

f k (x)dx=1 , we compute the ex-

pression of the variance and finally we show on examples 
that the sum of two independent Students is not a Student.

5) Chi-squared distribution

Let  consider  k  independent  normal  distributions 
N(0,1) : T1, T2,… and Tk. The sum X k=T1

2+T 2

2+...+T k
2  

follows a χ2-distribution with  k  degrees of freedom.

E(Xk)=∑
i=1

k

E(T i

2)=k (V (T )+E(T )2)=k
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For k≥1 and  x≥0 , f k (x)=
1

2
k /2Γ (k /2 )

x
k /2−1

e
−x /2

Expectation : Ek=k  Variance : V k=2k

Skewness : β1,k=√8/ k

Kurtosis : β2,k=3+12 /k

The chi-squared distribution converges to a normal distri-
bution for large k . Normal distribution of expectation k  
and variance 2k .
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 C. Function of a continuous distribution

We have a random variable Y defined as a function of a 
continuous random variable  X: Y=φ(X).

We know the law of X and we want to determine the law 
of Y. We use the cumulative distribution functions F and 
then we consider the derivative of FX to get the probability 
density function f.

Cumulative distribution function of X :

 FX (x)=P(X≤x)=∫
−∞

x

f X (x)dx

We consider the case where  φ(x) is a strictly monotonic 
function. Then Y is a continuous distribution.

Cumulative distribution function of Y :

 FY ( y )=P(Y≤ y ) and f Y ( y )=
d FY ( y )

dy

We try to express FY(y) with FX.

1) Case where φ(x)=ln(x):     x>0  and  Y=ln X

FY ( y )=P(Y≤ y )=P( ln X≤ y )=P(e ln X≤e
y )=P(X≤e

y)

We have applied the inverse function φ-1(x)=ex.

The exponential function is strictly increasing, so the direc-
tion of the inequality has been preserved.

so  FY ( y )=F X(e
y)  and  f Y ( y )=e

y
f X (e

y)
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⦁ Example: X is a uniform distribution U(1;2). What prob-
ability distribution is Y?

We have f X (x )={ 0 x⩽1

1 1<x<2
0 x⩾2

 then if e
y≤1 , y≤0  and 

f Y ( y )=0 . We continue like this for the two other cases 
and we obtain the distribution of Y:

f Y ( y )={ 0 y⩽0

e
y

0< y< ln 2

0 y⩾ln 2

2) Case where φ(x)=ax+b:     a≠0  and  Y=aX+b

If a>0 :

FY ( y )=P(Y≤ y )=P(aX+b≤ y)=P (X≤
y−b

a
)

A linear function is strictly increasing for a strictly positive, 
the direction of the inequality is not changed.

Then FY ( y )=F X(
y−b

a
) and f Y ( y )=

1

a
f X (

y−b

a
)

If a<0 :

 
FY ( y )=P(X≥

y−b

a
)=1−P (X<

y−b

a
)=1−FY (

y−b

a
)

and f Y ( y )=−
1

a
f X(

y−b

a
) then f Y ( y )=

1

|a|
f X (

y−b

a
)
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⦁  Example  1:  X is  a  uniform distribution  U(0,1). What 
probability distribution is Y?

We  have   f X (x )={ 0 x⩽0

1 0<x<1
0 x⩾1

,  so  if  
y−b

a
≤0  and

a>0  then y≤b  and f Y ( y )=0 . We continue like this for 
the two other cases and we obtain the distribution of Y:

 
U (0 ,1)→U (b , a+b)

If φ(x)=(b-a)x+a and a<b:

U (0 ,1)→U (a ,b)

⦁ Example 2: X is a Gaussian distribution N(0,1). We can 

find again a  N( μ,σ) distribution with Y= σX+μ. In gen-
eral, by applying an linear function we obtain a distribution 
of the same kind.

3) Case where φ(x)=x2:      Y=X2   and  y>0

FY ( y )=P(X2≤ y )=P(−√ y≤X≤√ y)=FY (√ y)−FY (−√ y)

and  f Y ( y )=
1

2√ y
( f X(√ y )+f X (−√ y))  if y>0 else zero.
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4) Case where φ(x)=ex:      Y=eX   and  y>0

FY ( y )=P(eX≤ y )=P(X≤ln y )=FY( ln y)

 and  f Y ( y )=
1

y
f X( ln y)  if y>0 else zero.

 D. Numerical simulation

We simulate continuous and discrete probability dis-
tributions using computers. For this purpose we use uni-
form distributions  created by random number  generation 
algorithms:

Continuous  uniform  distributions  U(0,1)  :  Ran#  on  a 
pocket calculator, ALEA() in the LibreOfÏce spreadsheet, 
etc.

Discrete  uniform  distributions  U(i,j)  :  for  example, 
rand(i,j)  in  PHP language.  rand(0,999)/1000 simulates  a 
uniform continuous law discretized to the thousandth.

⦁  Inverse transform sampling : the  inverse transformation 
method takes uniform samples between 0 and 1 from U. 
We express a X distribution as a function of U by inversion 
of the cumulative distribution function  FX. With  F strictly 
increasing:  X=F

−1(U ) .

Case of an exponential distribution: f X (x )=λ e
−λ x  if x>0 
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else  zero,  then  FX (x)=∫
−∞

x

f X(x )dx=1−e
−λ x= y  if  x>0 

else  zero.  So  x=−ln
(1− y )
λ

 and  finally  we  simplify, 

knowing that 1-U and U have the same distribution.

Simulation of an exponential distribution:  X=−
lnU

λ

⦁  Simulation of two independent normal  N(0;1)  distribu-
tions X1 and X2 from two independent uniform U(0,1) dis-
tributions U1 and U2:

X1=√−2lnU 1cos(2πU 2)

X2=√−2 lnU1sin (2πU 2)

This is the  Box-Muller transform. For a Gaussian there is 
no direct formulation of the cumulative distribution func-
tion F. Thus F-1 has no simple analytic expression.

⦁ Method for any X distribution:

If we have a continuous distribution we obtain a discrete 
distribution using class intervals for x. We then have a his-
togram and each bar of height pi is also discretized in units. 
We get an outcome of the distribution X drawing randomly 
and  equiprobably  a  unit  of  the  histogram.  We  get  by 
putting the bars end to end a full range of units. We use a 
discrete uniform distribution U(1,N) where N is the total 
number of units in the histogram. The generated value is 
compared to its position on the range and we get a xi obser-
vation.
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⦁ There are many other methods that use the different prop-
erties of the probability distributions. For example, by sim-
ulating the Bernoulli distribution, we obtain, by sum, a bi-
nomial distribution which itself allows us to simulate a nor-
mal distribution.
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 E. Exercises

Exercise 1: Binomial distribution   Answers p210

Check  that  the  binomial  distribution  defines  a 
probability distribution. Calculate the expectation and 
the variance as a function of the parameters n and p.

Exercise 2: Sum of binomial distributions 

                    Answers p211

Show  that  the  sum  of  independent  binomial 
distributions  with the same parameters  p is  itself  a 
binomial  distribution  whose  parameters  will  be 
determined.

Exercise 3: Geometric distribution   Answers p211

Check  that  the  geometric  distribution  defines  a 
probability distribution.
Calculate  the  expectation  and  the  variance  as  a 
function of the parameter p.
Show  that  the  sum  of  two  independent  geometric 
distributions with the same parameter p is a negative 

binomial distribution NB(2,p).

Exercise 4: First successes    Answers p212

1-  Let  consider  a  balanced  coin.  What  is  the 
probability that the first tail  will  appear on the fifth 
toss? Knowing that the first tail has not yet appeared 
on the third throw, what it is the probability that it will 
appear for the first time at the eighth toss? 

2- Let consider a balanced die. On average after how 
many  tosses  appears  the  first  six?  What  is  the 
probability that the first six will appear in the first six 
throws?
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Exercise 5: Poisson distribution   Answers p212

Check  that  the  Poisson  distribution  defines  a 
probability distribution.
Calculate  the  expectation  and  the  variance  as  a 
function of the parameter λ.
Determine the sum of two Poisson distributions.

Exercise 6: Uniform distribution   Answers p213

Calculate the variance for a continuous uniform 

distribution U(a,b).

Exercise 7: Exponential distribution   

                    Answers on page 214

Check  that  the  exponential  distribution  defines  a 
probability distribution.
Calculate  the  expectation  and  the  variance  as  a 
function of the parameter λ.
Determine the sum of two exponential distributions.

Exercise 8: Sum of Gaussians    Answers p215

1- Determine the sum of two standard normal 

distributions N(0,1).
2- Determine the sum of two normal distributions.

Exercise 9: First Students    Answers on page 215

1- Give the expressions of the first Student functions.
2- Give the polynomial degree in denominator, the 
variance, the kurtosis and the y-intercept.
3- Give the expression of the Student for k=9, 
centered and with a  variance equals to 14/5.
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Exercise 10: Student's t-distribution  

                      Answers on page 216

Whatever k, show that the Student distribution 
corresponds to a probability distribution.

We can use the integral I k=∫
−∞

+∞

(1+ x
2

k )
−
k +1

2 dx and

carry out an integration by substitution with u=
x

√k
.

Exercise 11: Variance of Student's t-distribution

                      Answers on page 218

Determine the variance of a t-distribution.

Exercise 12: Sum of Student's t-distributions 

                     Answers on page 218

Using an example show that the sum of two 
independent t-distributions is not a t-distribution.

Exercise 13: Chi-squared distribution  

                      Answers on page 221

Give the expressions of the first chi-square density 
functions in the cases where k=1, k=2, k=3 and k=10.

Exercise 14: Product of distributions  

                          Answers on page 221

Let X and Y be two independent distributions. 

1. Propose a general method for determining the 
probability distribution of Z=XY.

2. We now consider the case where X and Y are two 
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independent continuous uniform distributions U(1,2).
 a. Determine the analytic expression of the Z 
distribution.

 b. Find the shape of probability density function of Z 
with a numerical simulation of the product on a 
spreadsheet for n=10,000.

Exercise 15: Sum of exponentials   Answers p222
 
Let  Xi be n independent exponential distributions with 
the same parameters λ. Let Sn be the distribution of 
the sum: Sn=X1+X2+...+Xn. We have too: Mn=Sn/n.

1. Determine the probability distribution S2.

2. Determine the probability distribution Sn.

3. Determine the probability distribution Mn.

Exercise 16: Inverse distribution  Answers p223

Let X be a random variable with strictly positive 
support. 

1. Determine the probability density function of Y=1/X.

2. a. Find Tn the inverse distribution of Mn defined in
        the previous exercise.

    b. Find the inverse distribution of the Cauchy 
        distribution:

Cauchy distribution X: f x=
1
π

1

1+x2
for all x.
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IV. ESTIMATORS

We have a random variable X that follows a known 
distribution with parameters that are unknown.
We have a  n sample (X1,X2,…,Xn) of the random variable 
X from a population. We want to have a method to estimate 
at best the different parameters that define our distribution 
(inferential statistics). Our parameters are denoted by the 
letter θ and we call Tn our estimator of θ.

At first we use the sample to give a point estimate of θ, 
that has a high probability of being close to the parameter, 
next we provide an interval estimate of θ that has a high 
probability of containing θ.

 A. Properties of an Estimator

1) Bias

The bias of an estimator Tn is the expectation E(T n−θ) .

Then :  bT
n
(θ)=E (Tn)−θ

The estimator is unbiased if bn=0  so E(T n)=θ . 
It  is  best  to  have  an  unbiased  estimator  if  not 
asymptotically unbiased: lim

n→+∞
bn=0 .
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2) Mean Square Error

We  can  compare  different  estimators  with  their  mean 
square errors. The mean square error of Tn is defined as the 
expectation E[(T n−θ)

2]  and we show that:

 rT
n
(θ)=V (T n)+b

2

Indeed  E[(T n−θ)
2]=E(T n

2)−2θE (T n)+θ
2  (linearity  of 

the  expectation)  and  eventually  after  simplifications  of
r=V (Tn)+E(T n)

2−2θ(b+θ)+θ2  we  find  the  previous 

expression. For an unbiased estimator its mean square error 
is equal to its variance.  It is useful to choose an estimator 
whose mean square error tends to zero with the sample size 
and the faster is the convergence the better is the estimator.

⦁  Example  1: X̄n is  the  sample  average  regarding  the 
sample (X1,X2,…,Xn) defined as:

T n=X̄n=
1

n
∑
i=1

n

X i

Demonstrate  that X̄n is  an estimator of  the expectation 
θ=m=E(X) . Study its properties: bias, convergence.

E(T n)=1/n∑ E(X i)  using  linearity  of  the  expectation 
then E(T n)=1/n .nm=m  and b=0 .

V (T n)=1/n2∑V (X i)  (variance  of  a  sum  with 
independent variables) then r=1 /n2

. nσ 2  and r=σ2/n .

The sample average is a good estimator of the expectation 
of a random variable.  The estimator is  unbiased and the 
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mean square error tends to zero when n tends to infinity.

⦁  Example  2:  We  are  looking  for  an  estimator  of  the 
variance of a random variable, we propose the following 
two estimators:

 Sn

2=
∑
i=1

n

(X i−X̄ n)
2

n
 and Rn

2=
∑
i=1

n

(X i−X̄ n)
2

n−1

Which, in your opinion, is the best estimator of σ2 ?

Sn

2=1/n∑ (X i

2−2 X i X̄n+ X̄ n

2)   and

Sn

2=1/n∑ X i

2−2T n∑ X i /n+T n

2=1/n∑ X i

2−T n

2

then E(Sn

2)=E (X2)−E(T n

2)=σ2+m2−V (Tn)−E (T n)
2

and E(Sn

2)=σ 2−σ2

n
 so E(Sn

2
)=

n−1

n
σ

2  and b
S
n

2=−σ2

n

.

By a quite similar calculation we find b
R

n

2=0 .

This quantities are two estimators of the variance because 
they are unbiased or asymptotically unbiased.
Rn

2
 is the best estimator because it has no bias.
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 B. Construction of estimators

We  want  to  have  a  general  method  to  find  the 
appropriate  estimators  to  estimate  the  parameters  of  a 
distribution.

1) Method of Moments

We identify the moments of the population with those 
of the sample. We consider as many moments as we have 
parameters starting with the first moment. As we will see 
on examples this method provides us with estimators but 
does not guarantee us that these are the best in terms of 
bias and mean square error.

Theoretical moments: mk=E (X k ) ,  k∈ℕ
*

Sample moments: Xn

k=
1

n
∑
i=1

n

X i

k

We can also consider the moments centered or com-
pletely  normalized,  the  approach  remains  the  same.  The 
first n-sample moment is the sample average and it corre-
sponds to an excellent estimator as shown before. On the 
other hand, the centered second moment has a bias, as we 
have shown before we should divide by n-1 instead of n to 
have a unbiased estimator.
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⦁ Example 1: We have a checkerboard of 100 squares and 
200  seeds.  Every  second 
we randomly place a seed 
in  one of  the squares.  At 
the end of the experiment 
we  count  the  number  of 
seeds  in  each  square  and 
we  count  the  number  of 
squares  that  contain  no 
seed, one seed, two seeds 
and  so  on.  Let  X be  the 
random  variable  for  the 
numbers  of  seeds  per 

square. We obtain the following distribution:

k 0 1 2 3 4 5 6 7 8

n 12 28 34 10 8 7 0 1 0

We  assume  that  this  distribution  follows  a  Poisson 
distribution. Deduce the value of the parameter λ.
The  parameter  of  this  distribution  is  equal  to  the 
expectation  therefore  according  to  the  theorem  of 
moments,  λ  is  estimated  by  the  sample  average: 

λ=
1

n
∑
i=1

n

x i=
1

n
∑
k=1

p

nk xk then  λ=2   21.

This result is consistent with our model, indeed let us name 
n the number of squares and  N the number of seeds. We 
have  a  uniform  random  distribution.  We  could,  for 
example, use two balanced ten faces dice of different colors 
for the horizontal and vertical position. The frequency of 

21 Using the second moment we will find λ=2.06 .
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the event per second for each square is 1/n. For a Poisson 
distribution  at  any  instant  the  event  can  occur,  here  the 
time  is  discretized,  nevertheless  the  approximation  of  a 
continuous time is correct because one second is a small 
duration  compared  to  that  of  200  seconds  of  the 
experiment.  So  we  can  take  λ=N /n .  We  tend  to  a 
Poisson distribution when the number of squares and seeds 
tend to infinity.

⦁ Example 2: We assume that the lifespan of a glass follows 
an  exponential  distribution.  We  observe  in  months  the 
following  lifetimes:  7,  5,  37,  35,  17,  9,  6,  13,  4  and  8 
months. Determine thee parameter λ of the distribution.

For an exponential distribution E(T )=
1
λ , hence by using 

the first moment: λ=
n

∑
i=1

n

ti

and  λ=
10

141
≃0.071 .

We thus have a point estimate of the parameter λ and the 
life expectancy is about 14 months.

We will  show in an exercise that  this estimator Tn has a 

bias: E(T n)=
n

n−1
λ  and bT

n
= λ
n−1

.  

This bias and its mean square error tend to zero: 

 rTn
=λ2 (n+2)

(n−1)(n−2)
.

We  construct  from  this  estimator  a  new  estimator  Wn 

without bias: W n=
n−1

n
T n=

n−1

∑ X i

.

We show that E(W n)=λ  and rW
n
=V (W n)=λ2/(n−2) . 

This  estimator  is  better  than the previous:  zero bias  and 
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lower  risk  (mean  square  error).  A  new  estimate  of  the 
parameter gives λ≃0.064 and the life expectancy is about 
16 months.

⦁  Example  3:   We consider  that  the  mass  of  the  apples 
produced  by  a  tree  follow  a  normal  distribution.  We 
randomly draw and measure the following masses in grams:

158 131 146 158 125 153 166 121

127 123 195 149 124 153 123 129

Determine  the  mean  and  standard  deviation  of  the 
distribution.

μ=
1

n
∑
i=1

n

mi≃142.5 , σ2+μ2=
1

n
∑
i=1

n

mi

2  and σ≃20.2 .

⦁  Example 4:  The planks produced by a sawmill have a 
length which follows a uniform distribution U(a,b). 
We measure the lengths in millimeters of 8 planks drawn at 
random: 2017, 1987, 2018, 2014, 2003, 1985, 2013 and 
1981. Estimate a and b.

We have  E(X)=
a+b

2
=Xn

1
   

and  E(X2)=
(b−a)2

12
+
(a+b)2

4
=
a

2+ab+b2

3
=Xn

2

then  a+b=2Xn

1   and  ab=4 Xn

1 2−3Xn

2

Eventually  a≃1977   and  b≃2028
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2) Method of Maximum Likelihood

Let  X be a  discrete  or  continuous random variable.  We 
want to estimate a unknown parameter θ from a set  of 
observations {xi}.

We define a function f(x,θ) such that:

f (x ,θ) = {
Pθ(X=x) for a discrete variable

                              or

f θ(x) for a continuous variable

We define the likelihood function L. This is a function of 
θ, determine by the numbers x1, x2, . . . , xn:

L(x
1
, x

2
, ... , x i , ... , xn ,θ)= f ( x

1
,θ)× f ( x

2
,θ)×...× f (xn ,θ)

also we can simply write:

L(x1 , x2 , ... , x i ,... , xn ,θ) = ∏
i=1

n

f (x i ,θ)

The value of the parameter for which the product of the 
probabilities,  or  probability  densities,  taken  at  the 
different points of the sample, is maximum, is considered 
the  most  probable  value.  The  maximum  likelihood 
estimate of θ is the value that maximizes the likelihood 
function L(θ).
The  maximum  likelihood  principle  is  simple  and  the 
method is easy to implement:

∂L(x i ,θ)
∂θ

= 0     and    
∂2
L( xi ,θ)

∂θ2
< 0
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Usually  on  can  find  the  maximum by  differentiating  the 
likelihood function  L(θ).  However the calculation of the 
derivative may be tedious, it is why we prefer to consider 
the  logarithm  of  L(θ).  The  logarithm  is  a  increasing 
function  and  we  can  consider  the  extreme  values  of 
ln(L(θ)) instead of L(θ).

⦁  Example  1:  Let  us  take  again  the  case  of  a  Poisson 
distribution  and  determine  the  estimator  of  λ  by  the 
method of maximum likelihood.

Pλ (X=x)= λx

x!
e
−λ

  and  L=∏
i=1

n

λx i

x i!
e
−λ=e

−nλ∏
i=1

n

λ
x
i

x i !

ln L=−nλ+∑
i=1

n

ln λ xi

x i !
 and 

∂ ln L
∂λ

=−n+∑
i=1

n x i

λ
=0

then λ=
1

n
∑
i=1

n

x i

We find the same estimator as by the previous method.

⦁ Example 2: Let us take again the case of an exponential 
distribution  and  determine  the  estimator  of  λ  by  the 
method of maximum likelihood.

f λ( t)=λ e−λt  and  L=∏
i=1

n

λ e
−λ t

i=λn
e
−λ∑

i=1

n

ti
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ln L=n ln λ−∑
i=1

n

ln λxi

x i!
 and 

∂ ln L
∂λ

=
n
λ
−∑

i=1

n

t i

then λ=
n

∑
i=1

n

ti

The same estimator as by the previous method.

⦁  Example 3:   Let us take again the case of a Gaussian 
distribution and determine the estimators of μ and σ by the 
method of maximum likelihood. 

f ( x )= 1

√2π⋅σ
e
−

1

2
( x−μσ )

2

   and   L=∏
i=1

n
1

√2πσ
e
−

1

2
(
xi−μ
σ )

2

so ln L=−n lnσ−
n

2
ln(2π)−

1

2
∑
i=1

n

( xi−μσ )
2

 

∂ ln L
∂μ

=∑
i=1

n x i−μ

σ2
=0   and  μ=

1

n
∑
i=1

n

x i

∂ ln L
∂σ

=−
n
σ +

1

σ3∑
i=1

n

(xi−μ)
2=0  and σ2=

1

n
∑
i=1

n

(x i−μ)
2

We obtain the same estimators as by the moment theorem 
and we have again an estimator of the variance biased.
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⦁ Example 4:   Let consider now the uniform distribution.

L(xi , a , b)=∏
i=1

n

f (xi , a , b)={
1

(b−a)n
if {x i}⊂[a , b]

0 else

For  a fixed,  smaller  is  b bigger  is  the  likelihood,  then 
b=max({xi}) .
For  b fixed,  bigger  is  a bigger  is  the  likelihood,  then 
a=min({x i}) .

We have here very different estimators than by the method 
of moments,  for  the example of  the planks we have the 
following estimates:  a=1981  and b=2018 .

These estimators are biased, for example  b is necessarily 
smaller  than  the  theoretical  value,  but,  contrary  to  the 
method of moments we are assured that all the xi belong to 
[a, b].
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 C. Interval estimate

We now have effective tools to determine the values of 
the parameters of a distribution. We have determined point 
estimates and now we want to determine a confidence inter-
val.

The central limit theorem allows, from a large sample, 
to estimate the mean of a probability distribution with a 
confidence interval.

But  what  about  the other  parameters  different  from 
the mean? For example, what are the uncertainties on the 
parameter λ of an exponential distribution, or the bounds 
a and b for a uniform distribution?

We consider an unbiased estimator and if the estima-
tor is  biased we create a new estimator by removing the 
bias.

We use three different methods. The integral method which 
requires to determine the full probability distribution of the 
estimator. A second method, simpler, provides an inequal-
ity  that  overestimates  our  uncertainty,  but  only  requires 
knowledge of the variance of the estimator. And finally a 
third by numerical simulation.

For the  second method we use  the  Chebyshev's  in-
equality. This inequality can be applied to any probability 
distribution in which the mean and variance are defined. 
We do not have to know the aspects of the estimator distri-
bution, only its variance, but the inequality generally gives a 
poor bound:
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∀ϵ>0, P(|X−E (X )|≥ϵ) ≤
V (X )

ϵ2

⦁  Example  1:  Consider  again  the  checkerboard  and  the 
Poisson distribution with parameter λ. This parameter is 
estimated by the mean and we can therefore, in the case of 
large numbers, use the central limit theorem:

 λ=λm± t∞σ /√n
Let us estimate the variance:

k 0 1 2 3 4 5 6 7 8

k-λm -2 -1 0 1 2 3 4 5 6

(k-λm)2 4 1 0 1 4 9 16 25 36

n 12 28 34 10 8 7 0 1 0

σλ
2=

1

n−1
∑
i=1

n

(x i− x̄)2 , σλ≃1.44 and  λ=2.0±0.3  with 

95% confidence.
Here the sample size is not sufÏcient for this method but 
we have illustrated the general method for large samples. 
We probably have underestimated the width of the interval.

⦁ Second example: The  waiting time of a train follows a 
uniform  distribution  U(0,a).  We  observe  the  following 
waiting times 3, 12, 7, 17, 8, 14, 2, 5, 10, 14, 15 and 11 
minutes. What is the value of a ?
What is the bias, the variance of the estimator  Tn and the 
uncertainty on a at 90% confidence?
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   a) Let us first use the method of maximum likelihood 
which gives  us  the estimator  Tn ,  the distribution of  the 
maximum  of  a  number  n of  independent,  identically 
distributed variables:   T n=max({X i})  

a is here estimated at 17 minutes. 

The distribution of the maximum is such that:
 P(T n≤x)=P([X 1≤x]∩[X2≤x ]∩...∩[Xn≤ x])

the variables are independents, then: 

P(T n≤x)=∏
i=1

n

P(X i≤x )

Cumulative distribution function of X: FX (x)=P(X≤x)

FT n
(x)=∏

i=1

n

F Xi
(x )=( xa )

n

 for 0≤x≤a

FT
n
(x)=0  if x<0 , FT

n
(x)=1  if x>a

So we obtain the density of Tn : f T n
(x)=

d FT
n
(x )

dx
=n

x
n−1

a
n

for 0≤x≤a  and f T
n
(x)=0  else.

Expectation: E(T n)=∫ x f Tn
(x )dx=

n

a
n∫

0

a

x
n
dx=

n

n+1
a

The estimator Tn is biased: bT
n
=

n

n+1
a−a=−

a

n+1

a is underestimated and the bias is asymptotically zero.
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Variance: E(X2)=∫ x ² f Tn
(x )dx=

n

a
n∫

0

a

x
n+1

dx=
n

n+2
a ²

V (T n)=E(X 2)−E (X )2=
n

n+2
a ²−

n
2

(n+1)2
a ²=

na
2

(n+2)(n+1)2

It is better to take an unbiased estimator, for this we re-
move the bias and we get Wn:

W n=
n+1

n
Tn   with bW n

=0  and V (W n)=
a

2

n(n+2)

New estimate of a with Wn : a≃18.4  minutes.

For the uncertainty Δa we will compare three methods.

  -> With determine a confidence interval with the Cheby-
shev's inequality:

We apply the inequality to Wn : P(|W n−a|≥ϵ)≤
V (W n)

ϵ2

so P(|W n−a|≤ϵ)=P(−ϵ≤W n−a≤ϵ)

and P(ϵ≥a−W n≥−ϵ)=P(U n+ϵ≥a≥W n−ϵ)

we set ϵ=√V (W n)
α and we have:

1−P(W n−ϵ≤a≤W n+ϵ)≤α

Eventually:

 P(W n−√V (W n)
α ≤ a ≤W n+√V (W n)

α ) ≥ 1−α
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In the 90% confidence case  α=0.1  and for our sample 

V (W 12)=
18.4

2

12×14
≃2.0   and  Δa=√V (W n)

α ≃4.5 .

Then 13.9≤a≤22.9 and  a≃18.4±4.5  minutes.

  -> Let us determine a confidence interval with an integral 
calculation on the probability density of the estimator.

We determine the probability density of Wn:

P(W n≤x)=P (
n

n+1
W n≤

n

n+1
x)=P(Tn≤

n

n+1
x)

FW n
(x)=FTn( n

n+1
x)=( n

n+1

x

a )
n

 if 0≤x≤
n+1

n
a .

f W n
(x)=( n

a(n+1) )
n

n x
n−1

 if 0≤x≤
n+1

n
a  

and f W
n
(x)=0  else.

We  have  an  asymmetric  probability  distribution  whose 
maximum corresponds to the upper bound. For a 90% con-
fidence we remove the 10% of the left distribution tail from 
the confidence interval.

Thus we define amax and  amin such as:

Upper bound:  amax=
n+1

n
a  
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      so amax=(13

12 )
2

×17≃19.95  and amax≃20.0  minutes.

Lower bound:  ∫
amin

amax

f W
n
(x)dx=1−α

By numerical calculation with a≃18.4  and n=12,

∫
a
min

20

f W 12
(x )dx=0.9  with  amin≃16.4  minutes.

In conclusion, a≃18.4 +1.6

−2.0
 minutes

with 90% confidence.

The  interval  found  is  asymmetrical.  The  bounds  are  in-
cluded  into  those  of  the  Chebyshev's  inequality  and  we 
have here a more precise estimate of a.

  ->  Let  us  now  perform  a  numerical  simulation  on  a 
spreadsheet. The ALEA() function of the spreadsheet pro-
vides real  randomly and uniformly distributed between 0 
and 1. Then we multiply by the point estimate of a to ob-
tain the distributions Xi=Ui(0,a). We generate 10,000 sam-
ples of size 12. We place the maximum of each of these 
samples on a graph and thus have the sampling distribution 
of Tn:
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We thus find the same results as by the preceding method 
(file : www.incertitudes.fr/livre/Train.ods).

   a) We now use the estimator of the moment theorem: 
T n=2Xn . Here, for large n, we can use the central limit 

theorem because an afÏne function of a distribution gives a 
new distribution of the same form. We estimate the mean 
with the Gaussian law: 

x̄=
3+12+ ...+11

12
≃9.83   and  s=√(3− x̄)2+...

11
≃4.88

 m= x̄±t∞s /√n=9.8±2.3  with 90% confidence

Then a=19.7±4.6  minutes with 90% confidence.

In this case the value of n is only 12 and the distribution of 
the population is not normal, we want nevertheless to show 
how one would proceed for  n large. As we will  see with 
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numerical simulation, the interval is thus underestimated.
Indeed by  carrying out  a  numerical  simulation  with  this 
estimator, a=19.7±5.5  minutes with 90% confidence:

Comparison of  the results  of  the different  methods with 
90% confidence:
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13.9
Maximum 
Likelihood

Method 
of 

Moments

Chebyshev's inequality

Integrals and 
Simulation

Simulation

Central Limit Theorem 
(sample too small)

25.2

18.4

18.4

22.9

19.7

19.714.2

15.1 24.3

20.016.4



In conclusion, the maximum likelihood estimator converges 
much  faster  than  that  of  the  moment  theorem  and  we 
prefer  this  first  method.  The  variance  converges  to  1/n2 

instead of 1/n:

[V (W n)]ML
=

a
2

n(n+2)
    and    [V (T n) ]MM

=
a

2

3n
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 D. Exercises

Exercise 1 : Estimators of the mean    

Answers p224

Let consider the (X1,  X2,  X3).  X1,  X2 and  X3 are three 
independent  variables  with  the  same  distribution, 
expectation m and variance σ2.
Compare the following three proposed estimators  to 
estimate the mean m of the sample:

A3=(X1+X2+X3)/3, B3=(X1+2X2+3X3)/6 and
C3=(X1+2X2+X3)/3.

Exercise 2 : Homokinetic Beam   Answers p224

    We  consider  a  homokinetic  beam of  C+ ionized 
carbon  atoms.  We  measure  the  momentum  and  the 
kinetic energy of 100 atoms of the beam. The beam is 
considered perfectly unidirectional.
The  total  momentum  magnitude  and  kinetic  energy 
are:

p=∑
i=1

100

mv i=2.418×10
⁻21

kg.m/s  and

 Ek=∑
i=1

100
1

2
mv i

2=1.518×10
⁻18

J  with m=1.993⨉10-26 kg.

Let V be the probability distribution of the speed of 
the ions. Determine the average speed vm, its variance 
σV

2 and the uncertainty Δv with 95% confidence, using 
the sample taken and the appropriate estimators.
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Exercise 3 : Two estimators   Answers p225

    Let X be the following discrete random variable:

Values 0 1 2

Probabilities 3θ θ 1 - 4θ

1. What values of θ define a valid probability distribu-
tion?

2. Calculate E(X) and V(X).

3. Let (X1, X2,..., Xn) be a  sample of X.

We have Xn=
1

n
∑
i=1

n

X i
 and T n=a Xn+b .

Determine a and b for which Tn is an estimator without 
bias for θ.

Determine V(Tn).

4. We now consider the random variable Yi defined for 
all i∈⟦0 ;n⟧ by  Yi=1 if  Xi=1 and  Yi=0 otherwise.

Let Zn=∑
i=1

n

Y i
. Determine E(Zn).

Show that U n=
Zn

n
 is an unbiased estimator of θ. De-

termine V(Un).

5. We make estimates of θ with the following realiza-
tions:

Values 0 1 2

Frequencies 31 12 57

Estimate θ. Which estimator do you prefer? 
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Exercise 4 : Ballot boxes   Answers p225

    Two identical urns contain the same proportion p of 
black  balls.  In  the  first  ballot  box  we  draw  with 
remplacement a sample of size n1 and we note P1 the 
proportion of black balls in this sample. We perform 
the same experiment for the second urn. 

We define T=
P1+P2

2
 and U=x P1+(1− x)P2

 with x ∈ ]0,1[

Show that T and U are two estimators of p.
Which one is the best ?

Determine  the  value  of  x to  have  the  optimum 
estimator.

Exercise 5 : Continuous variable  Answers p226

We  consider  the  continuous 
variable  X  with  the  following 
density:  

Where  a is the parameter we 
want to estimate (a>1).

1. Check that f defines a valid probability density.

2. Calculate E(X).

3.  Determine  estimators  of  a by  the  method  of 
maximum likelihood and by the method of moments.

4.  Give  point  estimates  of  a for  the  following 
observations:

1.16 / 1.80 / 1.04 / 3.40 / 1.22 / 1.06 / 1.35 / 1.10.

5. Can we calculate V(X)?

6.  Perform a  numerical  simulation  of  the  law  of  X. 
What can we guess about the biases and convergences 
of the estimators found?
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Exercise 6 : Linear density    Answers p229

Consider the following continuous random variable X: 

f (x)={a x+b if 0≤x≤1

0 otherwise

1. Express b as a function of a such that f defines a 
probability distribution.

2. Calculate E(X) and V(X).

3. Determine an estimator Tn of a by the method of 
moments. Discuss the properties of this estimator.

4. We draw a sample:

0.81 0.67 0.72 0.41 0.93 0.55 0.28 0.09 0.89

Determine a point estimate of a. How would we get an 
interval estimate?

Exercise 7 : Estimators for the exponential law

                    Answers p230

The  exercise  of  the  previous  chapter  on  page  125 
provides the expression of the probability  density of 
the estimator Tn of λ obtained in the course:

f T n
(x)=

n
nλn

(n−1)! xn+1
e
−nλ

x if x>0 and zero if not

1. Determine the expectation, bias, variance and the 
mean square error of Tn.

2. Let  W n=
n−1

n
T n . Determine the expectation, bias, 

variance and the mean square error of Wn.

3. Which estimator would you recommend for λ?
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Exercise 8 : Decays   Answers p231

     The law of probability X of particle decay as a 
function  of  time  follows  an  exponential  distribution 
with  parameter  λ.  We  measure  the  lifetimes  in 

microseconds  of  a  sample 
of  ten  particles  and  we 
want  to  deduce  a  point 

estimate and an interval  estimate of  λ.  We will  use 
different methods and comment on them.

1. With the central limit theorem could you estimate 
the  expectation  m of  X  and  its  uncertainty  with  a 
confidence  of  90%  (m :  mean  lifetime)?  With  the 
propagation  of  uncertainties  formula  we  then  could 
find the value of  λ with its uncertainty. What do you 
think about this estimate of λ?

2. Let Tn be the estimator of λ found during the lesson. 
Like we shown previously this one is biased and then 

we use W n=
n−1

n
T n .

Determine by an integral calculus the uncertainty on λ 
with 90% confidence.

3. Find now this result by numerical simulation.
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2.2 3.32 1.93 0.88 4.36
7.1 0.65 0.53 4.69 0.31
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V. Measure with a ruler

Article published in the BUP [ii].

ABSTRACT
The measurement of a physical quantity by an acquisition  
system induces because its  resolution a  discretization error.  
We  are  here  concerned  with  measuring  a  length  with  a  
graduated ruler. This type of measure leads us to consider a  
uniform continuous probability distribution. We then use a  
convolution to determine the uncertainty with its confidence  
of a sum of lengths. Finally, we generalize to the general  
case  of  the  calculation  of  uncertainties  for  independent  
random variables using the error propagation formula.

INTRODUCTION
We want to measure lengths and evaluate uncertainties 

as  exactly  as  possible.  Uncertainties  about  the  measured 
values and their sums. We have a ruler of 15cm graduated 
to  the  millimeter  and  two  sets  of  cards.  The  ruler  is 
assumed to be perfect and the cards of each game identical.
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1. MEASURE OF THE LENGTH OF ONE CARD

We  place  the 
graduation zero on 
the left edge of the 
card.  On  the  right 
edge  we  consider 
the graduation clo-
sest  to  the  edge. 
The  experimenter 
does  not  read 
between  the  gra-

duations.  The  thickness  of  the  lines 
which  delimit  a  graduation  is  considered  negligible 
compared with  the width of this graduation. We get thus 
for the deck 1:

x
1
=8.4±0.05cm .
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Concerning the cards of the second deck:

x
2
=11.2±0.05 cm .

We  accept  a  loss  of  information  due  to  the  resolution 
δ=1mm  of the ruler. When we use these data later, all 
values between  xmin

=x
m
−δ /2  and  xmin

=x
m
−δ /2  are 

equally  probable.  We have to  consider  a  continuous and 
uniform random variable X. x  is a realization of X. This 
distribution of probability has a range E= x

max
− x

min  and 

its density f  x   verify:

∫
−∞

+∞

f (x)dx=1

The probability to be between x  and xdx  is f  x dx . 
The  result  is  necessarily  between  x

min
 and  xmax :  for 

example x
1
=8.4±0.05cm  with 100% of confidence, but 

x
1
=8.4±0.04 cm  with a probability of 80%.

156



To characterize the spreading of a distribution we consider 
the range E and the standard deviation σ  whose definition 
for a continuous law is:

V=σ2=∫(x−xm)
2
f (x )dx ,

V is called the variance. For a uniform distribution:

σ=δ/√12≃0.29δ ,

and  we  have  x=x
m
±σ  with  58%  confidence.  The 

standard deviation is an appropriate quantity to characterize 
the  width of  a  distribution.  The range  is  defined by the 
extreme values which may be unrepresentative or absurds.

2. LENGTH OF TWO CARDS PUT END TO END

We want  to  determine  the  uncertainty  on  x  with 
x= x

1
 x

2 . If we plot x2  as a function of x1  the set of 
the  possible  points  forms  a  square  domain.  The  set  of 
points  such as  x  is  constant  is  straight line segment of 
slope -1 and intercept x : x2

=−x
1
x . There is only one 

case where x= x
min  then { x1

= x
1 min

; x
2
=x

2 min }  at point 
A in the figure. However on all the segment [CD] we get 
x=x

m . We understand that the different values of x  do 
not have the same probability.
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The probability density f  of X is computed from those of 
X1 and X2. For a sum of independent random variables the 
result is given by a convolution [iii] :

f (x)=∫ f 1( y) f 2(x−y)dy ⇒ {
x<x

min
⇒ f (x)=0

xmin<x<xm⇒ f (x)=
(x−xmin)

δ2

xm<x<xmax⇒ f (x)=
(xmax−x)

δ2

x>x
max
⇒ f (x)=0
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We then have a triangular probability distribution.
We obtain  x=19 .6±0.1cm  with 100% confidence, and 
x=19 .6±0.055cm  with 80% confidence.

3. ANALOGY WITH THE THROW OF TWO DICE

For each die the six values are equally likely. Here the 
law of probability is no longer continuous but discrete. We 
launch  two  dice  simultaneously,  the  sum  of  the  values 
obtained is between two and 12. In this case, there is no 
equiprobability, a way to get two with a double one, two 
ways to get three with one and two or two and one ... to get  
seven we have the maximum of possibilities. We thus find a 
triangular distribution.

4. LENGTH OF TWO CARDS OF THE SAME DECK
    PUT END TO END
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The cards of a deck are supposed identical then if the 
length of one of them is overestimated, it will be the same 
for the second one. In this case the errors are added and 
can not be compensated. For two different cards, the first 
measure  can  be  underestimated  and  the  second 
overestimated, and a compensation can occur. Here it is no 
longer  the  case  and  when  X=X

i
+X

i
'  we  obtain  a 

uniform distribution of width 2 δ . Our random variables 
are not independent.

For the deck 1:

x
1
=8.4±0.04 cm⇒ x=2x

1
=16 .8±0. 08cm

with a confidence of 80%.

5. SUM OF N INDEPENDENT LENGTHS

We  have  X=∑
i=1

N

X i .  Each  length  X i  follow  a 

uniform distribution  of  width  δ .  For  the  sum  of  nine 
independent  random  variables  after  iteration  of  the 
calculation we obtain the following curve:
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In  this  case  we  obtain  x=x
moy
±0.11cm  with  80% 

confidence.  With  100%  confidence:  x=x
moy
±0.45cm , 

which leads us to consider domains where the probability 
of  presence  of  X is  really  negligible.  An uncertainty  of 
0.45cm seems unnecessary while 99% of the cases were 
already present with an uncertainty of 0.22cm.

Working with a confidence of 100% it is like considering 
the range, it is additive for a sum of variables. The range is 
proportional to N. 
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80% 95% 99%
N=1 0.40δ 0.48δ 0.50δ

2 0.55δ 0.78δ 0.90δ
3 0.66δ 0.97δ 1.19δ
4 0.75δ 1.12δ 1.41δ
5 0.84δ 1.25δ 1.60δ
6 0.92δ 1.38δ 1.76δ
7 0.99δ 1.49δ 1.91δ
8 1.06δ 1.59δ 2.05δ
9 1.12δ 1.69δ 2.18δ

10 1.2δ 1.8δ 2.3δ
20 1.7δ 2.5δ 3.3δ
50 2.6δ 4.0δ 5.2δ

100 3.7δ 5.7δ 7.4δ

But this approach does not take into account one thing: the 
curve narrows around the mean when N increases. There is 
another  additive  quantity:  the  variance.  The  standard 
deviation, square root of the variance, is proportional to √N 
and takes account of error compensations.

We obtain a bell  curve.  A statistical  theorem, called the 
limit central theorem, indicates that for N large the curve 
tends to a Gaussian. The range of a Gaussian is infinite for 
a finite standard deviation.

We summarize the evolution of the uncertainty on the 
sum of  N  independent  lengths  measured  with  the  same 
resolution  δ  in a table. In italics, from N=10, these are 
numerical  simulations  carried  out  on  a  computer  by 
generating random numbers.
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The results of the measurements are often given with 
a confidence of 95%, which corresponds for a Gaussian to 
an uncertainty of about 2σ .

6. OTHER APPLICATIONS

A runner wishes to measure his travel time. He has a 
watch with a digital display. The watch shows that he starts 
at 10h52min  and arrives at 11h11min . The display is 
at the minute, so he starts between  10h52min 00 s  and 
10h52min 59 s . Hence the date of departure is within the 
interval  t1

=10 h52min 30 s±30 s . The resolution is one 
minute.  The  duration  of  the  course  is   t=t 2−t 1 .  The 
results  remain  true  for  a  difference.  We  have  N=2  and 
 t=19min±47s  with 95% confidence.

Same procedure if students measure an angular difference 
with a goniometer. Each measurement is within a minute 
of arc so the uncertainty of the angular difference is of 47 
arc seconds with a confidence of 95%.

Seven persons are in an elevator. Its maximum load is 
500kg.  Their  individual  masses  are  measured  with  a 
resolution of one kilogram. The total mass is 499kg. What 
is the probability of being overloaded? 

For  N=7  the  uncertainty  reaches  one  kilogram  with  a 
confidence of 80%. So there is a one out of ten chance for 
the elevator to be overloaded.
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In  the  laboratory  many  measuring  instruments  have 
digital displays. The resolution is define by the last digit. 
But the overall uncertainty is much higher. It is necessary 
to consult the operating instructions of each device.

CONCLUSION

The general  approach consists  in combining laws of 
probabilities.  The mathematical  tool  used is  a change of 
variables, then one or more integrations. For the measure 
with a ruler described in this article, it was a sum of two 
independent  random  variables  and  we  obtained  a 
convolution.

If one wants to do a faster calculation, an analysis of 
variance may be enough. We have a random variable  X  
that  depends  on  N  independent  random  variables  X i : 
X= f X

1
, X

2
,. .. , X

i
, .. . , X

N
 .  We  call  σ i  the 

standard deviation of  X i  and  σ  that of  X . For finite 
σ
i  and  small  variations,  we  have  the  propagation  of 

standard deviations formula [iv]: 

σ2=∑
i=1

n

(
∂ f
∂ x i

)
2

σi

2

And,  independently  of  the  probability  distributions,  this 
relation between the variances remains true. One can thus 
give its result with an uncertainty for 2σ  or 3σ .
Is there a similar formula with the confidences? Yes, but it 
is  approximate,  it  is  the  propagation  of  uncertainties 
formula: 
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 f
2=∑

i=1

n


∂ f

∂ x i


2

 xi
2 ,

with  x i= x imoy± x i ,  f = f moy± f  and  a  constant 
confidence. This formula is very useful and allows a quick 
and reasonable calculation of the combined uncertainties. 
Moreover, it is exact if the form of the distributions is the 
same for X and the X i . For example, if the distributions 
X i  are Gaussian, any linear combination is also Gaussian. 

We thus take account of compensations and avoid using the 

formula   f =∑
i=1

n

∣∂ f /∂ xi∣ x i
 which  overestimates 

the uncertainties, sometimes even with such excess that one 
loses its physical sense. This last formula does not take into 
account  any  compensation,  we  have  the  worst  situation, 
statistically  unlikely.  Here,  for  example,  for  N=100,  one 
would have an uncertainty of  50 δ ,  instead of 5.7 δ  in 
practice (95% confidence).

In  this  article  we  focused  on  the  resolution  of  an 
acquisition system that gives a discretization error. But one 
can  also  consider  systematic  errors  and  random  errors. 
Here the ruler was supposed perfect, that means, accurate 
and precise.
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VI. Mathematical Tools

The mathematical tools used in chapter 1 are studied into 
the high school scientific section. The partial derivatives used in 
chapter 2 are taught during the first year of university but we 
quickly understand the link with the derivatives seen at the high 
school. It is at the end of the second chapter, with the use of 
matrices for generalized regression, that we immerse ourselves in 
university education. My goal is not to review or introduce all 
these concepts, only a small recap that can be useful to solve the 
exercises proposed.

A - Derivatives

  1- Definition : f '  x=lim
 0

 f x− f  x 
 

For example if f(x)=x² :

x2−x2=x22 x2−x2≃2 x and  f '(x)=2x.

On a graph the derivative corresponds to the slope of the curve at 
each point.

  2- Rules for basic and combined functions:

function f derivative f '  f

a x a (constant) a x =∣a∣ x

x


 x
−1  x=∣ x

−1∣ x

sin x  cos  x sin x =∣cos  x∣ x
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cos  x −sin  x  cos x =∣sin  x∣ x

e
x

e
x ex=e

x x

ln  x  1/ x  ln  x = x /∣x∣

uv u 'v '               (u and v as functions of x)

u v u ' vv ' u         (product rule)

u

v

u ' v−v ' u

v
2        (quotient rule)

f g  x g '  x  f ' g x  (chain rule)

•
1

x
= x

−1

so 
1

x
 '=−1 x−1−1=−

1

x
2 .

•  x=x

1

2 then (√x) '= 1

2
x

1

2
−1

= 1

2√x
.

• sin  x2 '= x2 ' cos x2 =2 x cos x2 

B - Partial derivatives

A  partial  derivative  of  a  function  of  several  variables  is  its 
derivative with respect to one of those variables, with the others 
held constant. For example, consider the following function of 
three variables:

f(x,y,z) = x² - 2z + xy

We can look at the variations of this function with respect to a 
variable while considering the other constants. We proceed then 
as for a derivative. So we have:

( ∂ f∂ x )y ,z=2 x+ y , ( ∂ f∂ y )x , z=x and ∂ f

∂ z x , y=−2

The first expression is said "partial derivative of f with respect to 
x" treating y and z like constants. ∂: curly d. 
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C - Taylor series

With  the  notion  of  derivative  we  have  studied  the  first-order 
behavior  of  a  function  around a  point,  here  we  refine  to  the 
higher orders.
For every infinitely differentiable function and for ϵ≪1 we 

have the following development in the neighborhood of a point: 

f (x0+ϵ)=f (x0)+ϵ f ' (x0)+
ϵ2

2
f ' ' (x0)+

ϵ3

3!
f (3)(x 0)+ ...+ ϵ

n

n!
f ( n)(x0)+...

The  more  we  take  high  order  terms  the  better  is  the 
approximation. For example for f (x )=sin( x )  and x0

=0  we 

find: sin(ϵ)≃ϵ−ϵ3

3!
, in the same way cos(ϵ)≃1−ϵ2

2
.

Also:  exp(ϵ)≃1+ϵ        ln (1+ϵ)≃ϵ        (1+ϵ)α≃1+αϵ

D - Integrals

We show in maths that: ∫
x=−∞

+∞

e
− x

2

dx=√π .

For the standard normal distribution, we can verify that the mean 
is zero and that the standard deviation is equal to 1:

p  x = 1

2
e
−

x2

2 and μ=∫
−∞

+∞

x⋅p (x )dx=0 because  the 

integral over a symmetric interval of an odd function is zero.

σ2=∫
−∞

+∞

x
2 1

√2π
e
−

x2

2 dx= 1

√2 π
∫
−∞

+∞

(−x)(−x e
−
x 2

2 )dx then

σ2√2π=[−x e
− x

2

2 ]−∞
+∞−∫

−∞

+∞

(−1)e
− x

2

2 dx=0+√2∫
−∞

+∞

e
− x

2

dx

so the standard deviation equals one.
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We have used an integration by parts:

∫
a

b

u(x )v '(x )dx=[u(x )v (x)]a
b−∫

a

b

u' (x )v (x)dx

then we did an integration by substitution: x '=x /2 .

We  can  go  further  by  calculating   the  skewness

μ
3
=∫

−∞

+∞

x
3⋅p (x)dx ,  the  kurtosis μ

4
=∫

−∞

+∞

x
4⋅p (x )dx ,  and,  in 

general, the moments of order n μ
n
=∫

−∞

+∞

x
n⋅p ( x)dx .

All these moments allow us to characterize a distribution. 

For  a  Gaussian 
3
=0 (symmetric).  If  this  coefÏcient  is 

negative the curve spreads to the left, if it is positive the curve 
spreads  to  the  right.  For  a  Gaussian β

2
=μ

4
/σ4=3 .  If  this 

coefÏcient is less than 3 the curve is more flat than a Gaussian. 
For a binomial distribution : β

2
=3−8 /n .

Integration by substitution:

Let u=g
−1 (x)  be  a  new  variable  with  g−1   a  continuous 

function strictly monotonic on [a,b] and g  the inverse function, 

then:

∫
a

b

f (x)dx= ∫
g
−1
(a)

g−1(b)

f (g (u))g ' (u)du
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E – Series

Binomial formula: (a+b )n=∑
k=0

n

(nk)a
k
b
n−k

Derivatives of geometric series: 

 if |q|<1 then ∑
k=0

∞

q
k=

1

1−q

we take the derivative with respect to q: ∑
k=1

∞

k q
k−1
=

1

(1−q )2

then ∑
k=2

∞

k(k−1)qk−2=
2

(1−q )3
… 

And finally we find the  negative binomial formula:

∑
k=r

∞

k (k−1)...(k−r+1)q
k− r
=

r !

(1−q)r+1
 

so   
1

(1−q)r+1
=∑

k=r

∞

(kr )q
k−r

A definition of the exponential function: e x=∑
k=0

∞ x
k

k!

F - Gamma function           Γ( x)=∫
0

+∞

t
x−1

e
−t
dt

This function is an extension of the factorial to real and complex 
number (except for 0, -1, -2...)22. We will use it for half-integer 
numbers.  We  demonstrate  with  an  integration  by  parts:

Γ( x+1)=xΓ(x) .  Γ(1)=1  then  for  n  integer 

Γ(n+1)=n! . Moreover,  Γ(1/2)=√π  allows to calculate the 

function for the half-integers.

22 For example π!≃7.2 .
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VII. Answers to Exercises

Chapter I : Random Variable

E1 : Ages     Exercise on page 37

n=15; mode=18; median=18; mean⋍18.333; geometric mean⋍18.303; 
range=4; standard deviation⋍1.113; root mean square deviation⋍1.075; 
mean deviation⋍0.844.

E2 : Card Game   Exercise on page 37

Number of possible draws: 32x31x30x29x28 divided by the different 
ways of arranging 5 cards 5x4x3x2x1=5! permutations then  201 376 
hands (32 choose 5).

* Number of possible draws for a four aces hand: only one possiblity 
for the 4 aces, and 28 possibilities for the fifth card, so  28 possible 
hands (one hand = 120 possible draws).

Hence the probability p=28/201376=139 chances on a million=1 out 
of 7192=0,014%.

* For a flush: each color has 8 cards. Number of ways to choose 5 

cards among 8 =
8!

5!(8−5)! = (85)  = C
5

8 = 56.

There are 4 colors : 4x56 =224.

Hence the probability  p = 224 / 201 376 = 1 out of 899 = 0,11%.

E3 : Gravity Field   Exercise on page 37

a) We have an important dispersion. We could indicate less significant 
figures.
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b) g = 9.32 m/s². σg=1.994m/s²≃2m/s²

c)  We assume that the data follow a Gaussian distribution, then we can 
use a Student's distribution for the sampling distribution:

Δg  =  2.36·1.994/√8  =  1.66  m/s².  Then  g=9.32±1.66m/s²  and  the 
known value is within the confidence interval found:

7.66 m/s² <  g = 9.81m/s² < 10.98 m/s²  with  95% confidence.

d) We are at the distance σ from the center g≃10m/s², then a probabil-
ity of  68% (prediction interval: Gaussian).

E4 : Elevator      Exercise on page 38    25 out of 1000.

E5 : Assignment    Exercise on page 38

a) n=35, N≃8.29 and σN≃4.40 .

b) Grades with their frequencies:

Grades 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Freq. 0 1 3 2 1 5 2 2 2 1 4 4 2 2 0 3 0 0 1 0 0

c) Class intervals, frequencies and relative frequencies:

Class I. [0,1,2] [3,4,5] [6,7,8] [9,10,11] [12,13,14] [15,16,17] [18,19,20]

Freq. 4 8 6 9 4 3 1

F. rel. 11.4% 22.9% 17.1% 25.7% 11.4% 8.57% 2.86%

When we group the data into class intervals there is a loss of informa-
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tion. But we gain visibility. We can more easily bring out an overall be-
havior and categories of students. Relative frequencies directly indicate 
the percentage of students in each class, for example, 34% of students 
appear in great difÏculty, which is more difÏcult to interpret on the first 
diagram. 

E6 : Yahtzee      Exercise on page 38

1) 1/1296

2) (1+5+15+35+70)/65=1.65%

3) a) n=30, S≃16,73 and σS≃3.88.

    b) For the sum of five dice we get a distribution of the population al-
ready close to a Gaussian (see on p18 for four dice) and we use the Stu-
dent t-value:  ΔS≃1.45 and  S=16.73±1.45 with a confidence of 95%. 
Here the population is infinite and known. We find μpop=17.5 . It is 
consistent. There is no reason to think that the dice are unbalanced.

    c)

d) The sum is the result of five independent throws, we can think ac-
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cording to the central limit theorem that we approach a Gaussian: (24-
μ)/σS≃1.68 . We are close to t∞,90%, so half 5% on the right tail. So 1 
chance out of 20 (on our throws here: 1/30, it's all right). 

E7 : Elastic Bands      Exercise on page 39

Ho : 10 elastic bands out of 1000 are not functional.

Let consider the discrete random variable Xo , its value is 1 if the elastic 
is not functional and 0 if the elastic works. Probability to have a non 
functional elastic band: p=0.01

µ=0.01x1+0.99x0=0.01 and σ²=0.01x0.99²+0.99x0.01² then σ≃0.0995

We have x̄=μ+ t∞σ/√n   and x̄=no/n  then  no=n(μ+t∞σ/√n) .

*For n=1000: n is large and according to the central limit theorem we 
have a normal distribution. We look for a value of no that has right tail 
probability 1%.

So no=1000(0.01+2.33×0.099/√1000)≃17.3  and we reject the delivery 
from no=18 damaged elastics among the 1000 randomly drawn. Using 
the binomial law no=19, close to 18 (see below for the explanation).

*For n=200: on the basis of the same reasoning we get no=6, indeed 
no≃200(0.01+2.33×0.099/√200)≃5.3 .  But  is  the hypothesis  of  large 

numbers justified here? n must be large, for example greater than 30, 
but  also  np and  n(1-p) must  also  be  sufÏciently  large,  for  example 
greater than 5. As here  p is not around fifty-fifty but on the contrary 
close to an edge, unlikely or almost certain, we will check the validity 
by making an exact calculation.

We have a sequence of identical and independent trials (the large num-
ber of elastics in the batches delivered make it possible to consider the 
draws with replacement). Trials with two outcomes, success (S) with 
the probability  p or failure (F) with the probability  q=1-p. We recog-
nize a binomial distribution with parameters n and p (see on page Er-
reur : source de la référence non trouvée for more details). We call X 
the law which corresponds to the number  k of successes, number of 
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damaged elastics on n tests. We look for the value of k=no from which 
we would reject Ho with less than one chance in a hundred to take a 
wrong decision: P (X⩾k)⩽1% .

 P (X⩾6)=1−P(X⩽5)≃1.6 %   and  P (X⩾7)≃0.4 %

(on a spreadsheet : LOI.BINOMIALE(k;n;p;1)). So  no=7.

*For n=50: with the binomial distribution no=4 (we would have found a 
different result with the central limit theorem no≃2.1 and no=3).

E8 : Testing an insulating panel      Exercise on page 39

x = 39.28 ± 0.49 mW/m/K with a confidence of 95% and a relative un-
certainty of 1.2% (the distribution of the population is assumed to be 
normal  and the  sampling distribution  of  Student).  Results  in  accor-
dance with expectations. According to these results the manufacturer 
could announce a lower margin. According to a conventional bilateral 
Student test the value announced by the constructor is well within the 
confidence interval.  The manufacturer  indicated a mean but  did not 
give a standard deviation, we estimated it  with the sample: σ≃s≃0.69. 
The probability α of rejecting the null hypothesis when it is true is  
23% (with t=( x̄−μ)√n/ σ≃1.29  and =TDIST(1.29,9,2) in LibreOfÏce), if 
the compliance hypothesis were rejected there would be a 23% chance 
of wrongly rejecting it, which is a far too high risk.

E9 : Coins    Exercise on page 40

1) 2 ≃2.56 < 3.84. There is no reason to question the equilib-
rium of the coins. The difference with respect to the equiprobability is 
explained by the statistical fluctuations. Or by a conventional bilateral 
test (prediction interval):

|( x̄=42/100)−(μ=0.5)|⩽t∞95 % (σ=0.5)/√n=100

2) 2 ≃0.4 < 3.84. Likewise. Probability α ≃ 20.8%, we have a one 
in five chance of rejecting the assumption then what is right, one can 
not reject it.

3)  2 ≃25.6 >> 3.84 !  The coin  is  certainly  not  balanced.  One 
chance out of two million to reject the hypothesis when it is right, we 
reject it!
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E10 : Parity          Exercise on page 40

Expected values 
288.5 288.5

174 174

6 6

χ2
=
(470−288.5)2

288.5
+
(107−288.5)2

288.5
+ ... and 

χ2
≃344 with  ddl=2x1=2  the  probability  to 

reject the hypothesis when it is true is much less 
than one chance in 1000 (13.8 <<344 for 0.1%). 
The parity is not respected.

Understanding these results would require extreme bad faith to argue 
that  there  is  no  reason  to  believe  that  parity  is  not  respected  by 
justifying deviations by statistical fluctuations.

E11 : Births    Exercise on page 41

2 ≃6.16 < 7.8. The hypothesis can not be rejected, we need more 
data.

2 ≃128 >> 7.8. Hypothesis totally rejected.

E12 : Gaussian distributions in the plane and the space   

          Exercise on page 42

1D :

1- x=∫
−∞

∞

x
1

2
e
−
x

2

2 dx=0 since  the  integrated  function  is  defined 

and  odd  on  a  symmetric  integration  interval  (integral  property).

∣x∣=∫
−∞

∞

∣x∣
1

2
e
−
x

2

2 dx=2∫
0

∞

x
1

2
e
−
x

2

2 dx because  this  time  the 

function is even. ∣x∣=
−2

2
[e

−
x

2

2 ]= 2


. The distance corresponds to 

an absolute value, so its mean is non-zero and positive. x is the mean of 
the abscissa, an algebraic quantity.

σx = σ∣x∣ =1,  because x² = ∣x∣² and we have a normalized distribution.
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2- P ∣x∣1=P −1x1=∫
−1

−1

1

2
e
−
x

2

2 dx we calculate these inte-

grals numerically (with the use of a calculator, on a computer ...) and 
find the results of the chapter on the Gauss distribution at σ, two σ and 
three σ.

2D :

1- p  x , y=
1

2
e
−
x

2

2 1

2
e
−
y

2

2 =
1

2
e
−
x

2
 y

2

2 p(x,y) is  a  positive 

function, like we expect for a probability.

On the whole plan we have a probability of 100%:

∬ p(x , y)dx dy=∫ 1

√2π
e
−
x

2

2 dx ∫ 1

√2π
e
−
y

2

2 dy=1×1=1

2- ∬ p  x , ydx dy=∫ 1

2
e
−
2

2 2 d =1 p =e
−
2

2

and ∫
0

∞

p d =−[e
−
2

2 ]=1 .

=∫
0

∞

 p  d =∫2
e
−
2

2 d =[2−e
−
2

2 ]−∫2 e
−
2

2 d 

=0−02∫
0

∞

e
−t

2

dt=2

2

=2  after  an  integration  by  parts 

(u=ρ) and an integration by substitution (ρ=√2 t  and we recognize a 
known integral).


2
=2

=∫
0

∞

2
p  d =∫3

e
−
2

2 d =[2−e
−
2

2 ]2∫e
−
2

2 d 

We find an integral computed in 1D: σρ
2
=0−0+2×1   =2

3- P =∫
0

2

e
−
2

2 d =1−
1

e
P 2 =1−

1

e4
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3D :

1- p  x , y , z =
1

2
3

e
−
r

2

2
p r = r2

e
−
r

2

2 =
4

2
3

2- ∫
0

∞

pr dr=×2 =1  (Integral already calculated in 2D)

3- r=∫
0

∞

r pr dr=∫
0

∞

r
3
e
−
r

2

2 dr=×2=
4

2

 r

2
=∫

0

∞

r
2
p r dr=∫

0

∞

r
4
e
−
r

2

2 dr=3  by integration by parts

so  r=3

4- P (r⩽σr)=∫
0

√3

ρe
−
r

2

2 dr≃0.608 and the other two also by numeri-

cal calculation.
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Chapitre II : Correlation and Independence 

E1 : Correlations        Exercise on page 88

1-  a)  x1=(-1-1-1+0+0+0+1+1+1)/9=0  also  x2=0  and  x3=0.
1=∑i=1

9  xi 1−x1
2/ 9−1=6x1/8 so 

σ1=σ2=σ3=√3 /2≃0.87 .
b) 

c) r12=0 . r13=0 . r23=-1 . X1 and X2 are not correlated. The same for X1 

and X3. X2 and X3 are dependents and totally correlated.
2- a)  x1=0 and x2=0. σ1≃1.22 and σ2≃1.58 .    
c)  r12=0.904 . Quantities are positively correlated.
3- a)  x1=0 and x2=0. σ1≃1.73 and σ2≃1.53 . 
c)  r12=0 .  Quantities completely uncorrelated,  do not forget  that  the 
correlations sought here are linear. There is a correlation in the form 
of a V.

2- b) 3- c)
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E2 : Volumes        Exercise on page 89

1- 
V1=(100.1+100.0+99.9+100.0)/4  so  V1 = 100.0 mL.

σ
1
=√0.1

2+0
2+(−0.1)2+0

2

4−1
=√2

3
⋅0.1mL then  σ1≃0.082mL

According  to  the  central  limit  theorem  and  the  distribution  of  the 
population Gaussian: ΔV=t.σ/√n=3.18x0.0816/2
tddl=3;  95%=3.18  so  ΔV1 ≃ 0.13 mL  and  ΔV1 /V1 ≃ 0.13/100
The pipette, withe a confidence of 95%, has a uncertainty of 0.13 mL, 
so for 100 mL a percent uncertainty of 0.13%.

2-
V i=V

i−V and
∑
i

[(V 1
i−V 1)(V 2

i−V 2)]=∑
i

[V̂ 1
i
V̂ 2

i]=0.1×0+0×0.1+(−0.1)×0+0×0.1=0

by definition r 12=
∑
i

[V 1

i−V 1 V 2

i−V 2 ]

∑
i

V 1

i−V 1
2∑

i

V 2

i−V 2
2

so  r12=0, the quantities are totally uncorrelated and 
therefore independent.

3-
 V={200.1 , 200.1 , 199.9 , 199.9}mL  so  V = 200 mL.

σ
V
=√0.1

2+0.1
2+(−0.1)2+(−0.1)2

4−1
= 2

√3
⋅0.1mL

then  σV≃0.115mL and  ΔV≃ 0.183 mL ,  ΔV /V ≃ 0.09%
4- 
V(V1,V2) then we have:

V 2= ∂V
∂V

1


V 2

2

 V
1

2 ∂V
∂V

2


V 1

2

V
2

2=V
1

2 V
2

2

and ΔV=√2.ΔV 1≃0.18 Same result as in question 3-.
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E3 : Trees             Exercise on page 90

We have d=∑ xi (also written d=x1+x2+...+xi+...+xn), where the 

xi  are the length measures for each displacement of the stick. Δxi is the 

uncertainty on each measurement xi. Here Δxi=1cm  and xi=100±1cm.

What is then the uncertainty Δd ?

One  would  think  that   d=∑ x i ,  so  Δd=100cm and  1m  of 
uncertainty per 100m measured from one tree to another. But there is a 
problem, this is absolutely not what the simulation indicates below!

Rather,  it  indicates  Δd=0.1m.   Indeed  a  simple  calculation  of 
probabilities shows that it is extremely unlikely to obtain for d, 99m or 
101m,  whereas  one  has  a  chance  in  two,  for  xi,  to  have  0.99m or 
1.01m. Now we want to have Δd with equal probability of Δxi.

We get ∂ d /∂ x i=1 and Δxi=Δx, whatever i=1...n, so Δd=√n.Δx and 

Δd=0.1m, which corresponds well to the expected result!
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E4 : The two-position method           Exercise on page 90

(∂f'/∂D)d=(D2+d2)/4D2  and  (∂f'∂/d)D=-d/2D, then
Δf'=√[((D2+d2)/4D2)2(ΔD)2+(d/2D)2(Δd)2]
so  f' = 464.1±3,8 mm
and  Δf'/f'=0.8%.

Either by a numerical calculation with a spreadsheet and macros (no 
need then to perform calculations of partial derivatives):
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The spreadsheet 
uses here 2 of the 4 
perfectly not correlated 
globally Gaussian packets 
available:

    

-2 -1 0 1 2

0

2

4

6

8

Packets

xi

f 
i

1 2 3 4 x y f

-2 0 -2 0 1973.71 536 457.04

-1 -1 0 0 1986.86 509.71 464.02

-1 0 -1 1 1986.86 536 460.56

-1 1 1 1 1986.86 562.29 456.93

-1 1 2 -1 1986.86 562.29 456.93

0 0 0 0 2000 536 464.09

0 0 -1 -2 2000 536 464.09

0 -1 1 -1 2000 509.71 467.52

0 1 1 -1 2000 562.29 460.48

0 -1 1 2 2000 509.71 467.52

0 0 0 1 2000 536 464.09

1 -2 0 0 2013.14 483.43 474.26

1 0 -1 0 2013.14 536 467.61

1 -1 0 -1 2013.14 509.71 471.02

1 2 -1 0 2013.14 588.57 460.27

2 1 0 1 2026.29 562.29 467.56
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E5 : Refractive Index             Exercise on page 90

According the Snell's law for the refraction: n2=n1

sin i1

sin i2

so  n2≃1.462 

 n2(i1,i2)  and

 n2
2= ∂n2

∂ i1 i2
2

 i1
2 ∂n2

∂ i2 i1
2

 i2
2
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(The variation with respect to the index n1 is not included because n1 is 
assumed to be known with a great accuracy)

So ∂n2

∂i 1

i2

=
n1

sin i 2
cosi1 and ∂n2

∂i2 i1=n1sin i1
−cosi2

sin2i2
.

hence  n2=[cos30 °
sin 20°


180 

2

 sin 30° cos20 °

sin
220 °

2
180 

2

]
1/2

(the angles are placed in their natural unit, the radians, dimensionless 
quantity: π rad = 180°)

Finally Δn2=0.1470 with 95% confidence
then n2=1.46±0.15 and  Δn2 /n2=10%.

With the spreadsheet:  n2=1.46±0.16 and  Δn2/n2=11%.The numerical 
method  is  approximate  but  we  verify  that  we  have  not  made  a 
calculation error.

Moreover,  with  a goniometer we can make measurements of  angles 
much more accurate to a few minutes of arc (one arc minute = 1' = 
1°/60). 

E6 : Cauchy's equation               Exercise on page 90

1 -

 n
2= ∂n∂Dm


A

2

 Dm
2 ∂ n∂ A Dm

2

 A
2

with  ∂n∂Dm

A

=
cos [ ADm/2 ]

2sin A/2  and

 ∂n∂ A Dm

=
cos [ ADm/2]sin  A/2−sin [ADm/2 ]cosA/2

2sin 2A/2 
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with A=60°≃Dm  :  ∂n∂ Dm

A

≃1

2
and  ∂n∂ A Dm

≃−1

then Δn≃0.00065 and  Δ  n/n  ≃  0.04%
(we find the same result with a numerical calculation)

2-
With error bars,  Δn=0.00065 and Δ(1/λ²)=2Δλ/λ3 with Δλ=0.05nm, 
we find A=1.67877±0.00182; ΔA/A=0.109%;  
B=(1.285 ± 0.055)⨉10-14 m² and ΔB/B=4.26%

n as a function of 1/λ² (1/m²) :

A simple regression give r=0.99995 ...

(If  we  miss  the  error  bars  A=1.67877±0.00075; ΔA/A=0.044%; 
B=(1.285 ± 0.022)⨉10-14 m² et ΔB/B=1.75%)

3- With a  simple regression:

• r=0.99947... for n(1/λ)

• r=0.99995... for n(1/λ²)

• r=0.99982... for n(1/λ3)
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An expression in 1/λ²  is therefore better,
But what value of α allows to optimize the regression?

To  determine  this  value  we  plot y= ln n−A= xln B with
x= ln(λ) .  α and ln(B) will be obtained with their uncertainties and 

A will be chosen to maximize r.
The results are as follows rmax≃-0.99997024 pour A≃1.6843744 

and we find:  α= - 2.306 ± 0.033 . Then with the error bars:  α= - 2.3 
± 0.1  . Conclusion  α= - 2 is not in the interval, the model with   1/λ²   is 
not validated.

That  said,  it  works  properly.  The difference  can be  explained 
simply because the theory of light-matter interaction used to find the 
Cauchy's equation give a more complicated function. Here we consider 
a Taylor expansion of this function and actually there are more terms:

n=A+
B

λ2
+
C

λ4 . A more advanced study could verify this by including 

the new 1/λ4  term.
We  should  also  check  our  experimental  uncertainties,  it  is 

possible  that  we  have  neglected  or  underestimated  sources  of 
uncertainty (for example by tripling the angular uncertainties up to 6': 
α= - 2.3 ± 0.3 ...).

E7 : Wall             Exercise on page 92

1-

R p=
ep

λ pS
=

0.4mK m

0.045W×72m
2

so R p=0.123 K /W

 Rp

R p


2

= ep

e p


2

 p

 p


2

and Δ Rp/Rp=0.103
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R p=0.123±0.013K /W

2- Re=0.0069±0.0010K /W

3- The resistances are in series: R=Rp+Re 

et  R= R p
2 Re 

2 and R=0.130±0.015K /W

4- Φ=
ΔT
R
=

12

0.130
=92.3W

 /2=T / T 2 R /R2 T=T intérieur−T extérieur

then Δ(ΔT )=√2×0.5°C , / =  12.9% et
80W⩽Φ⩽104.3W hence a minimum heating power:

Pmin = 105 W

E8 : Insulation et Inertia                    Exercise on page 93

1- In parallel:
1

Réq

=∑
i
 1

R i
=∑

i
 iS i

e i


or wit the thermal conductances G=1/R : Géq=∑
i

Gi

then in the present case:

1

R
=

S s

e s/s


S t

 et / t 


Sm

em/m


S h

eh/h
=

36

4


54

8


82

4


8

1

concerning the uncertainties:

G=∑
i

Gi

2 , G i=S i

ei /i

e
i
/

i
2

, ΔG≃2.471W /K

and Δ R=R
2ΔG≃1.26mK /W

then R=22.6±1.3mK /W and  R /R = 5.6 %
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2- Φ=
ΔT
R
=

12

22.6×10
−3
≃531W ± 8.1% (As in the exercise Wall) 

and a minimum heating power:

 Pmin = 575 W
3-

We necessarily have 
an horizontal 
asymptote T=Text: 
the temperature can 
not drop 
spontaneously below 
Text.

If the curve was linear the temperature would tend towards -∞ with 
time.

T−b=ae
−t / and  ln (T−b)=ln a−

1
τ t

,

we find b=Text= 5.7°C (maximum correlation coefÏcient r),
Then we do a regression on a spreadsheet with y= ln T−b  and
x=t (on page 2 in the file IncertitudesLibres):

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

x=t

y=
ln

(T
-T

e
xt

)
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slope = -1/τ = -0.156± 0.0157 h-1

y-intercept = ln a = ln (Tint-Text)= 2.474 ± 0.0949
rmax ≃ -0.9937170474 (the best alignment of the points)

we have:
 

=
 1 /
1/

and  x=x .ln x

Then : τ  = 6 h 25 min  within  10.1%  and  Tint = 17.5 ± 1.2 °C.

4-
a)    energy outflux during dt = thermal energy lost during dt

so dt=T

R
dt=

T t −T ext

R
dt=C dT

and
dT

dt


1


T=

1


T ext with =RC

The general solution has been given in question 3-.

b) C= /R and C /C 2= /2 R/R2

and  C = 1034 ± 119 kJ/K 
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E9 : Yield             Exercise on page 94

1-
 On a spreadsheet (regression line on the graph):

x y (xi-xm) (xi-xm)² yim (yi-yim)² xi^2 (xi-xm)² (yi-ym)² (xi-xm)

*(yi-ym) *(yi-ym)

100 41 5271.43 90000 40.79 0.05 10000 90000 308.76 5271.4

200 44 2914.29 40000 46.71 7.37 40000 40000 212.33 2914.3

300 53 557.14 10000 52.64 0.13 90000 10000 31.04 557.14

400 63 0 0 58.57 19.61 160000 0 19.61 0

500 66 742.86 10000 64.5 2.25 250000 10000 55.18 742.86

600 65 1285.71 40000 70.43 29.47 360000 40000 41.33 1285.7

700 78 5828.57 90000 76.36 2.7 490000 90000 377.47 5828.6

xm = ym = Cov(x,y) = Var(x) = sy/x = sx2 = sx = sy = s2xy =

400 58.57 16600 280000 3.51 1400000 216.02 13.2 2766.7

da = 0,017 da/|a| = 29% dy = r = 0.9701

db = 8 db/|b| = 22% 9.021 r: linear and algebraic

 correlation coefficient.

a = 0.059 + ou - 0.017 sa = 0.00663

b = 35 + ou - 8 sb = 2.96579 Critical linear

0.042 < a < 0.076 correlation coefficient:

27 < b < 42 rc = 0.669

Linear correlation test: R= 0.941

if |r|<rc then quantities not correlated R: coefficient of determination (R=r^2).

if |r|>rc then quantities correlated 94.1% of the variation of  y  is

Here the quantities are correlated. explained with that one of x
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Yield as a function of the amount of fertilizer:

2- The yield would then be 
of 67 Q/ha ± 4 Q/ha with a 
confidence of 95 pour cent.

For xo= 550

Estimate of the mean of yo:

63 < yo < 72
yom= 67

dyom= 4

dyom/|yom|= 6%

3- The yield would then be 
of 35 Q/ha ± 8 Q/ha with a 
confidence of 95 pour cent 
(y-intercept).

For xo= 0

Estimate of the mean of yo:

27 < yo < 42

yom= 35

dyom= 8

dyom/|yom|= 22%

4- The probability is of 95% 
(2σ prediction interval).

For xo= 250

Prediction for yo:

40 < yo < 60

yom= 50
dyom= 10

dyom/|yom|= 20%
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E10: Study of a battery                     Exercise on page 95
 

To characterize  an  electrical  component  we can  plot  U(I)  with  the 
following  circuit:

In  this  case  we 
study a battery. 
By  varying  R  the 
circuit  works  on 
different  points  of 
the  voltage-current 
characteristics  of 
our battery. 

There  are  two  possible  circuits  depending  on  the  positions  of  the 
ammeter and the voltmeter (RA→0 and RV→∞). 

1- The spreadsheet give:

a = -17.85 ± 0.92

b = 4.7327 ± 0.00049

r = -0.9980 Confidence: 95 %

then:
E=4.7327±0.0005 V
accuracy: 0.010 %
r=17.85±0.92 Ω
accuracy: 5.16 %

U(V) as a function of I(A):

0.00005 0.00025 0.00045 0.00065 0.00085

4.7150

4.7170

4.7190

4.7210

4.7230

4.7250

4.7270

4.7290

4.7310
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2-
I(A) dI(A) U(V) dU(V) poids wi wi/S

0.000093 2.16E-07 4.731 0.00537 3.47E+04 10%

0.000115 2.61E-07 4.731 0.00537 3.47E+04 10%

0.000153 3.35E-07 4.730 0.00537 3.47E+04 10%

0.000235 7.70E-07 4.728 0.00536 3.48E+04 10%

0.000469 1.24E-06 4.724 0.00536 3.48E+04 10%

0.000520 1.34E-06 4.724 0.00536 3.48E+04 10%

0.000584 1.47E-06 4.722 0.00536 3.48E+04 10%

0.000666 1.63E-06 4.721 0.00536 3.48E+04 10%

0.000775 1.85E-06 4.719 0.00536 3.48E+04 10%

0.000926 2.15E-06 4.716 0.00536 3.48E+04 10%

S=

3.48E+05

da = 6.09 da/|a| = 34.1% sa = 6.09

db = 0.00324 db/|b| = 0.0685% sb = 0.00324

a = -17.85 6.1

b = 4.7327 0.0032

±

±

then: E = 4.7327 ± 0.0032 V , accuracy: 0.07 %
and r = 17.85 ± 6.1 Ω , accuracy: 34 %

U(V) as a function of I(A):

0.00010.00020.00030.00040.00050.00060.00070.00080.00090.0010

4.710

4.715

4.720

4.725

4.730

4.735
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The results in question 2- are the good ones, because those in 1- do not 
take into account important sources of uncertainty.

E11: Thin lens formula            Exercise on page 95

In the context of the small angle approximation we obtain the thin lens 
formula:

1

OA'
− 1

OA
= 1

f '
        ,  f' : image focal length.

Here  the  object  and  the  image  are  real  and  according  to  the  sign 
convention chosen OA0 and OA '>0 . To have positive quantities 
we set: OA=−OA and OA=OA' .

The fastest method for measuring the focal length of a converging lens 
is the autocollimation method. Then we have the Bessel method, more 
precise but longer to implement. The advantage with the other method 
of this exercise, certainly long, is that we do not work with a single 
measure  but  with  n measures.  The  larger  the  number  is,  the  more 
accurate is the result.

ΔOA  contains  geometric  uncertainties  (length  measurements)  and 
modeling uncertainties (lens thick,  small  angles approximate).  ΔOA' 
contains in addition the optical uncertainties (focusing latitudes):

ΔOA'=√(ΔOA'geo²+ΔOA'mod²+ΔOA'opt²)
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The relationship between OA and OA' is hyperbolic, then we consider 
x=1/OA and  y=1/OA'.  We have  then  a  linear  relationship  y=ax+b 
where the slope  a as to be equal to -1 and the y-intercept  b to 1/f'. 
Δx=Δ(1/OA)=ΔOA/OA², as well for Δy.

With a spreadsheet we obtain:
(here the file www.incertitudes.fr/livre/TPlentille.ods)
a= -1.02±0.09 and b=0.0082±0.0004 so f' = 122 ± 6 mm (consistent 
with the manufacturer statement f'=125 mm).

a= -1 is correctly in the interval, we also verify the validity of the linear 
relationship between 1/OA and 1/OA'. To further clarify the validity of 
the thin lens formula, we should also show that this linear relation is the 
one which gives the best correlation.

y as a function of x:
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n = 8 a estim.= -1.0210 a=

x dx y dy poids wi

0.00157 0.0000124 0.00667 0.000667 2249189

0.00189 0.0000178 0.00625 0.000664 2265985

0.00202 0.0000203 0.00610 0.000558 3210643

0.00227 0.0000258 0.00581 0.000608 2696211

0.00286 0.0000408 0.00524 0.000548 3308045

0.00357 0.0000638 0.00467 0.000546 3308566

0.00476 0.0001134 0.00342 0.000328 8248034

0.00667 0.0002222 0.00137 0.000191 11349080

S=

36635752

Theory

E12 : 

∑
i=1

n

 x i−x 
2=∑

i=1

n

xi
2−2∑

i=1

n

x ix∑
i=1

n

x
2=n x 2−2x∑

i=1

n

x inx
2

                  

n x2−2 x∑
i=1

n

x
i
nx

2=n x2−2 x nxn x
2=n x2−x2

E13 :

sb=sr 1

n
 x

2

∑  x i−x
2
=sr∑  x i−x

2n x
2

n∑  x i−x
2

=sr n  x
2−x

2nx
2

n∑  x i−x
2
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da = 0.0871 da/|a| = 8.5%

db = 0.000408 db/|b| = 5.0%

a = -1.021 + ou - 0.087

b = 0.00821 + ou - 0.00041

-1.11 < a < -0.93

f'=1/b= 122

df'=d(1/b)= 6

df'/f'=d(1/b)/|1/b|= 5%



then sb=sr n x
2

n∑  xi−x
2
=sr ∑ x i

2

n∑  x i−x
2

E14 :

sa=
sr

∑
i

 x i−x
2

and sb=sr ∑ xi
2

n∑  xi−x
2

so s
b
=s

a∑ x i

2

n

Which brings us immediately to the desired result.

E15 :  Asymptotes                 Exercise on page 97

For the extreme line of greater slope:

 
 yo+= yo +−yo=a+ xob-−a xob=a . xo−b

lim
xo∞

 yo+= lim
xo∞

 a . xo− b= a .xo

For the confidence curve:

 yconf=t n−2 sr 1

n


 xo−x
2

∑  xi−x
2
=t n−2 sr 1

n xo

2


1− x
xo

2

∑  xi−x
2
xo

so lim
xo∞

 y conf=t n−2 sr0
1

∑  x i−x
2
xo= a . xo

For  the  prediction  curve  we  arrive  at  the  same  conclusion.
As we experimentally guessed all the asymptotes meet when we tend to 
infinity.

E16 :  Confidence  Interval  and  Prediction  Interval  for  Linear 
Regression With error bars       Exercise on page 97

1- x=
∑
i=1

n

w
i
x
i

∑
i=1

n

wi

and x2=
∑w i x i

2

∑w i

.

 =∑w i ∑w i xi
2 − ∑ wi x i

2

=∑w i
2

x 2−x
2

2- Simple regression:
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 y o=tn−2 sr  1

n


x o−x 
2

∑  xi−x
2



sa=
sr

∑
i

 xi−x
2

 and  a=t
n−2

s
a  

then  tn−2 s r= a∑  xi−x 
2       

            

so   y o= an  x2−x
2 1

n

 xo−x 2

n  x2−x
2

Error bars  regression:  a = ∑wi



and =∑ w i 
2

 x2−x
2 hence by analogy we have:

so  yo=
1

n∑w i 1
 xo−x

2

x
2−x

2
for the  confidence,

and    yo=
1

n∑w i 1n
 xo−x

2

x
2−x

2
for the prediction,

3-  By  the  same  calculation  as  in  simple  regression 
lim
xo∞

 yo+= a . xo

 y conf=
1

n∑w i 1
 xo−x

2

x
2−x

2
=

1

n∑w i  1

xo

2

1− x

xo 
2

x
2−x

2
xo

lim
xo∞

 y conf=
1

n∑w i  1

x2−x2
xo=

1

n∑w i
 ∑w i 

2


xo

lim
xo∞

 yconf=
1

n ∑w i


xo=

1

n
 a . xo

By analogy we have to take n=1 into the error bars regression formu-
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 yo=∑wi

 n  

∑ wi 
2 1

n


 xo−x 
2

n x2−x
2



las.  In  fact  we  had  to  expect  a  factor  of  difference,  indeed  the  wi 

weights  are defined  by  a  factor. For  example,  we could  have  taken

w i '=
1/a2

 y i/a 
2 x i

2
.  Also  in  simple  regression  the  number  of 

points is clearly defined, while with the error bars some points count 
more than others, n=1 means that all the points correspond to 100% of 
the data. To find the formulas of the statement we replace n by 1. 

E17     Others expressions       Exercise on page 98

x=
∑w i xi

∑w i

x
2=
∑w i x i

2

∑w i

x y=
∑ wi x i yi

∑ wi



∑wi 
2
= x

2−x
2

a =
∑w i ∑ w i xi y i − ∑ wi x i ∑w i yi


= x y−x y

x
2−x

2

b =
∑ wi yi ∑wi x i

2 − ∑ w i xi ∑ wi x i yi


=y x
2−x x y

x
2−x

2

 a = ∑wi


= 1

∑w
i

1

 x2−x
2

 b = ∑wi x i

2


= 1

∑w i
 x

2

x
2−x

2

Simple regression: a=
x y−x y

x
2−x

2 (same formulas with the bars)

and y=axb imply b=y x
2−x x y

x
2−x

2 (same formula)

 a=t n−2 sr
1

∑
i

 x i−x
2
=
t n−2 sr

n
1

 x2−x
2

 et

 b=t n−2 sr  ∑ xi
2

n∑  xi−x
2
=
t n−2 sr

n  x
2

x
2−x

2
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This formulas are similar. Like n~1 we have
1

∑ wi

~t n−2 sr so 

1

∑ wi

for the error bars regression, it is equivalent to the residuals 

uncertainty in simple regression.

E18 :  Least Squares Method       Exercise on page 99

❶ Simple regression: ∑ d
2=∑

i

 y i−a xi−b 2

∂ ∑ d
2

∂b
=∑

i

2
∂  y i−a x i−b 

∂b
 y i−a x i−b =−2∑

i

 yi−a x i−b

then ∑  yi−a xi−b =0 , ∑ y i−a∑ x i−nb=0

and finally by dividing by n: y=a xb

∂ ∑ d
2

∂a
=∑

i

2
∂  y i−a x i−b 

∂a
 y i−a x i−b =−2∑

i

xi  y i−a xi−b

then ∑  yi−a xi−b  xi=0  ,  ∑ y i x i−a∑ xi
2−b∑ xi=0

and we divide by n: x y−a x
2−b x=0

so x y−a x
2−y−ax x=0 and a= x y−x y

x
2−x2

❷ Error bars regression: S
2=∑

i

wi  y i−a x i−b2

∂ ∑ S
2

∂b
=−2∑w i yi−a x i−b  because wi does not depend on b.

And we obtain also  y=a xb .

∂w i

∂a
= ∂
∂a  1

 y i
2a 2 xi

2 =− 2a xi
2

 y i
2a2 xi

22
=−2a x

i

2w
i

2

∂∑ S
2

∂ a
=−2a∑

i

 x i

2
w i

2 yi−a x i−b 2∑
i

2w i−xi y i−a x i−b 
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but  x i  is small compared to xi and yi, so we can neglect the first term 
and to keep only the second one, and thus find the same result as before 
in simple regression.

Method 1:

 1- a= x y−x y

x
2−x

2
=
∑ xi yi−x yi 

n x2−x
2

=...

 2- V a =∑ p
i

2V  y
i
=
∑ xi−x

2

∑  x i−x
2 

2


r

2=...

Because the variables yi are independent and are assumed to have the 
same variance.

 3- b=y x
2−x x y

x
2−x

2
=
∑  yi x

2−x x i yi

n  x2−x
2

=...

V b =
∑  x2−x xi 

2

∑  x
i
−x

2 
2
 r

2=
n  x2 

2

−2 x
2
x

2x
2
x

2

∑ x
i
−x

2 
2

 r

2=...

Method 2:

a=
∑ x i yi−x∑ yi

n x2−x
2

    or 

∂∑ yi
∂ y j

=
∂ y1...y j...yn

∂ y j

=0...1...0=1

and  
∂∑ x i yi
∂ y j

=
∂ x1 y1...x j y j...xn yn

∂ y j

=0...x j...0=x j

then  
∂a
∂ y j

=
x j−x

n x2−x
2

   and sa
2=∑  x

j
−x

n  x2−x
2 

2

s y i

2=...

Analogous procedure for b.
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Matrix approach: the system of equation p201 is equivalent to

{ y−b−ax=0

x y−b x−a x
2=0

 , H=1 x

x x
2 , A=ba  and B= yx y .

HA=B,  A=H-1B , H−1=
1

x
2−x

2  x2 −x
−x 1   and b

2=H−111r

2

We have a matrix of non-zero determinant, and we have applied the in-
version formula for a 2×2 matrix (we verify that  HH-1=H-1H=I). We 
then quickly have the formulas sought.

E19 Expectation of a    Exercise on page 99

E a =E ∑
i

pi y i=∑
i

pi E  y i=∑
i

pi  x i

E a =∑
i

pi x i∑
i

pi ∑ pi=
1

∑  x
i
−x

2∑  x i−x =0

 ∑ pix i=∑
x i xi−x

∑ x
i
−x

2
=

1

∑ x
i
−x

2∑  x i−x
2x x i−x=10

then  E a=

E20 Standard Deviations proportional to y    Exercise on page 100

1- a=
∑ wi∑w i xi y i−∑ wi x i∑ wi y i

∑w
i∑ w

i
x
i

2−∑w
i
x
i 

2 with w i=
1

k
2
yi

2 .

2- a=
u

v

∂a
∂ y

j

=
u ' v−v ' u

v
2

u'=
∂u
∂ y j

=−
2

y
j

3∑
x

y
∑ 1

y2

−x j

y
j

2
−
−2 x j

y
j

3 ∑ 1

y
−∑ x

y2

−1

y
j

2
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v '= ∂ v
∂ y

j

=−2

y j
3 ∑

x
2

y2
∑ 1

y2

−2 x j

2

y j
3
−2∑ x

y2

−2 x j

y j
3

We thus have the calculation of  the partial  derivative,  we 
add them to the square according to all the values of j on a 
spreadsheet in order to obtain sa:

y=5x+5

y=5.34x+3.46
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Data set 1 for k=0.1: sa≃0.422

Data set 2 for k=0.1: sa≃0.427

We  find  exactly  the  same  results  with  small  variations 
method:

j=1 j=2 j=3 j=4 j=5 j=6 j=7

∂a
∂ y j

-0.2237 -0.0203 0.0331 0.0496 0.0542 0.0543 0.0528

and sa≃0.422

j=1 j=2 j=3 j=4 j=5 j=6 j=7

∂a
∂ y j

-0.2232 -0.0016 0.0514 0.0343 0.0667 0.0410 0.0611

and sa≃0.427

We had with the classic method p67:

Data set 1 for k=0.1: sa≃0.422

Data set 2 for k=0.1: sa≃0.399

Again the method with the propagation formula and more re-
alistic than the classical method.

E21 Interpretation of wi         Exercise on page 100

1- We want to find the straight line which passes at best 
through all the rectangles of uncertainties, and if possible 
closer to their center. If the slope of the line is small, the 
line is close to the horizontal, a≃0  and only Δyi will act 

to  adjust  the  line  and  w
i
≃ 1

 y i
2

.  For  example,  a 

rectangle such as  Δxi=Δyi will  determine as much the 
line as another one for which Δxi=0. On the contrary, if 
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the line is vertical, a≃∞  and only Δxi will act to adjust the line and 

w i≃
1

a x
i
2

.

the formula  w i=
1

 y
i
2 x

i
2

.

E22 Decomposition into Gaussians    Exercise on page 101 

We consider a decomposition of the form:

We have six parameters: 

  ,   , etc.

We start with the following estimated parameters: 

If you start with any parameters, the iteration may be divergent. You 
first see if the set of estimated parameters give a graphically correct 
result and, above all, you try manually, groping, to minimize S2. 

We obtain the following expressions for the first iteration:
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We got the variations of the parameters then we obtain a new set of 
parameters for the second iteration. We iterate as much as necessary 
for convergence and stability of the quantities:

Hence the following final parameters and inverse matrix:
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We can thus determine the standard deviations on the parameters:

59.960 59.980 60.000 60.020 60.040 60.060

0

2

4

6

8

10

12

A nail corresponds to an area of 0.01x1, so for a unit area: u.a. = 100 
nails.

A=∫
−∞

+∞

α e
−

1

2(
x−β
δ )

2

dx=√2πα δ

with an integration by substitution: x '= x−

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For the left peak: N
1
=√2 πa

1
a

3
=17.33±4.91

For the right peak: N
2
=√2 πa

4
a

6
=31.18±4.72

In total: N=N1+N2=48.5±6.8 (consistent with 48 nails)
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Chapter III : Probability Distributions

E1: Binomial Distribution      Exercise on page 122

Positive probabilities. Moreover, according to the binomial formula:

∑
k=0

n

P (X=k)=∑
k=0

n

(nk)p
k
q
n−k=(p+q )n=1

Probabilities between 0 and 1.

Expectation: E(X )=∑
k=0

n

k P(X=k)=∑
k=1

n

k
n!

(n−k )!k !
p
k
q
n−k

then E(X )=∑
k=1

n
n (n−1)!

(n−1−k+1)!(k−1)!
p p

k−1
q
n−1−k+1

We extract from the sum the quantities independent of k:

E(X )=n p∑
k=1

n (n−1)!
(n−1−k+1)!(k−1)!

p
k−1

q
n−1−k+1

We perform the index substitution j=k-1:

E(X )=n p ∑
j=0

j=n−1 (n−1)!
(n−1− j)! j !

p
j
q
n−1− j=np(p+q )n−1=np

Variance:

E(X2)=∑
k=0

n

k
2
P(X=k )=∑

k=1

n

[k (k−1)+k ]
n!

(n−k)! k!
p
k
q
n−k

then E(X2)=∑
k=2

n
n!

(n−k)!(k−2)!
p
k
q
n−k+E(X ) and

E(X2)=∑
k=2

n
n (n−1)(n−2)!

(n−2−k+2)!(k−2)!
p

2
p
k−2

q
n−2−k+2+E (X )

E(X2)=n(n−1)p2×1+E(X )=n(n−1)p2+n p=n
2
p

2−np
2+np

and V (X)=E(X 2)−E (X )2=np(1−p)=npq
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E2: Sum of binomial distributions   Exercise on page 122

P(Z=k)=∑
i

P ([X=i ]∩[Y=k−i])=∑
i

P (X=i)P X=i(Y=k−i)

If the random variables are independent:

P(Z=k)=∑
i

P (X=i)P(Y=k−i)

for the binomial distributions  Bx(n1,p)  and BY(n2,p):

P(Z=k)=∑
i=0

n1+n2

(n1

i ) p
i
q
n

1
−i ( n

k−i) p
k− i

q
n

2
−k+ i

then   P(Z=k)=[∑i=0

n1+n2

(n1

i )( n

k−i)] pk qn1+n2−k

And finally using the Vandermonde identity for the binomial 
coefÏcients we get:

  P(Z=k)=(n1+n2

k ) pk
q
n1+n2−k

  so a Bz(n1+n2,p).

E3: Geometric distribution      Exercise on page 122

Positive probabilities.

∑
k=1

∞

P (X=k)=∑
1

∞

q
k−1

p= p lim
k→∞

1−q
k

1−q
=1

Probabilities between 0 and 1.

Expectation:   ∑
k=1

∞

k P (X=k )= p∑
1

∞

k q
k−1
=p

1

(1−q)2
=

1

p

Variance:   E(X2)=∑
k=1

∞

k
2
P(X=k )= p∑

1

∞

[k (k−1)+k ]qk−1
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and  E(X
2
)=p q∑

2

∞

k (k−1)q
k−2

+E(X )=pq
2

(1−q)3
+

1

p

then  V (X)=
2q

p
2
+

1

p
−

1

p
2
=

2q+ p−1

p
2

=
q

p
2

Sum of independent geometric random variables of parameter p:

 P(Z=k)=∑
i

P (X=i)P(Y=k−i)=∑
i=1

k−1

q
i−1

p q
k−i−1

p

so  P(Z=k)=(k−1)qk−2
p

2

Probability of having a second success in rank k. The first success has 
k-1 possibilities from position 1 to k-1. 

E4: Firsts successes       Exercise on page 122

1- P(X=5) =(1/2)4.1/2 = 1/32 ≃ 3%. PX>3(X=8) =P(X=8-3) =P(X=5).

2- E(X)=1/p=6, on average after six throws.

P(X⩽6)=∑
k=1

6

q
k−1

p=p∑
i=0

5

q
i= p

1−q ⁶
1−q

=1−q
6≃66 %

E5: Poisson distribution     Exercise on page 123

Positive probabilities.

∑
k=0

∞

P (X=k)=∑
0

∞
λk

k !
e
−λ=e

−λ∑
0

∞
λk

k!
=e

−λ
e
λ=1

(definition of the exponential function in terms of series)

Probabilities between 0 and 1.

Expectation:
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 ∑
k=0

∞

k P (X=k )=∑
1

∞
λk

(k−1)!
e
−λ=∑

j=0

∞
λ j+1

j !
e
−λ=λ e−λ∑

j=0

∞
λ j

j!
=λ

Variance:  E(X2)=∑
k=0

∞

k
2
P(X=k )=∑

1

∞

[ k(k−1)+k ] λ
k

k !
e
−λ

E(X2)=∑
2

∞
λk

(k−2)!
e
−λ+E(X )=e

−λ∑
2

∞
λk

(k−2)!
+λ=λ2+λ

then  V (X)=λ2+λ−λ2=λ

Sum of independent Poisson distributions with parameters λ1 and λ2:

 P(Z=k)=∑
i

P (X=i)P(Y=k−i)=∑
i=0

k λ
1

i

i !
e
−λ1

λ
2

k−i

(k−i)!
e
−λ2

and  P(Z=k)=∑
i=0

k

λk

i !(k−i)!
e
−λ1−λ 2=[∑

i=0

k

(ki )λ1

iλ2

k−i ] e
−λ 1−λ2

k !

With the binomial formula: P(Z=k)=
(λ

1
+λ

2
)k

k !
e
−(λ 1+λ 2)

The expression obtained corresponds to a
Poisson distribution with parameter λ1+λ2.

E6: Uniform distribution       Exercise on page 123

E(X2)=∫
−∞

+∞

x
2
f (x)dx=∫

a

b
x

2

b−a
dx=

1

3

b
3−a

3

b−a
=

1

3

(b−a)(b2+a b+a2)
b−a

then   V (X)=E(X 2)−E (X )2=
1

3
(b2+ab+a2)−

(a+b)2

4

and   V (X)=
(b−a)2

12

213



E7: Exponential distribution     Exercise on page 123

Positive density of probability. 

∫
−∞

+∞

f (t )dt=∫
0

+∞

λe−λ t dt  (improper integral)

 I A=∫
0

A

λe−λ t dt=[−e
−λ t ] A

0
=1−e

−λ A
 then lim

A→+∞
I A=1

Expectation:  E(T )=∫
−∞

+∞

t f (t )dt=∫
0

+∞

λ t e−λ t dt

J A=∫
0

A

λ t e−λ t dt=[−t e
−λ t]+∫e

−λ t
dt=−Ae

−λ A−
1

λ e
−λ A+

1

λ
 

(integration by parts)

and  E(T )= lim
A→+∞

J A=
1
λ

Variance:  E(T 2)=∫
−∞

+∞

t
2
f (t )dt=∫

0

+∞

λ t2
e
−λ t

dt

After two successive integrations by parts:

K A=∫
0

A

λ t2
e
−λ t

dt=[−t2
e
−λ t ]+2∫ t e

−λ t
dt  

then  E(T 2)= lim
A→+∞

K A=
2

λ2
 et V (T )=

1

λ2

Sum of independent exponential distributions of the same parameter:

f Z (x )=∫
−∞

+∞

f X ( y )f Y (x− y )dy  

• if x<0  then f Z (x )=0

• if x>0  then f Z (x)=∫
0

x

λe−λ yλe−λ(x−y )
dy
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and  f Z (x )=λ
2
e
−λ x∫

0

x

dy=λ2
x e

−λx
,  It  is  not  an  exponential 

distribution, it is a Gamma distribution with parameters 2 and 1/λ.

E8: Sum of Gaussians     Exercise on page 123

1-   f Z (x)=∫
−∞

+∞

f X ( y)f Y (x− y)dy= 1

2π ∫−∞
+∞

e

−y
2

2 e

−(x−y )2

2 dy

f Z (x)=
1

2π ∫−∞
+∞

e
−

1

2
[ y2+(x−y )2]

dy= 1

2π
e
−

x2

4 ∫
−∞

+∞

e
−( y− x

2)
2

dy

then   f Z (x)=
1

2√π
e
−
x

2

4 =
1

√2π√2
e
−

1

2

x2

√2
2

 we  recognize  a  normal 

distribution.  Distribution  centered  and  as  expected  with  a  standard 

deviation √2 , indeed  σZ

2=σX

2+σY

2=1+1=2 .

2-    f Z (x )=
1

2π
∫
−∞

+∞

e
−

1

2
( y−μ1

σ1
)

2

e
−

1

2
( x− y−μ2

σ2
)

2

dy  We  then  have  a 

somewhat  long  calculation: 

f Z (x)=
1

2π
∫
−∞

+∞

e
−
σ2

2 ( y−μ1)
2+σ1

2 (x−y−μ 2)
2

2 σ1

2σ2

2

dy=...  which, once conducted, 

does indeed provide a normal distribution with mean μZ=μ1+μ2  and 

variance σ
Z

2=σ
1

2+σ
2

2 .

E9: First Students    Exercise on page 123

f 1( x)=
1
√π

Γ(1)

Γ( 1

2 )(1+x 2)
 then f 1( x)=

1
π

1

1+x2
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also f 2( x)=
1

2√2

1

(1+ x
2

2 )
3

2

, f 3( x)=
2

√3π
1

(1+ x
2

3 )
2

and f
4
(x)= 1

√ 4π

Γ(5

2 )
Γ (2) (1+ x

2

4 )
5

2

= 1

2√π

3

2

1

2
Γ(1

2 )
1!(1+ x

2

4 )
5

2

so f 4 (x)=
3

8

1

(1+ x
2

4 )
5

2

E10: Student's t-distribution   Exercise on page 124

Positive density of probability.

We want to show that k⩾1 , ∫
−∞

+∞

f k(x )dx=1 .

We assume that the integrals are convergent.

dx=√k du  then with the integration by substitution and the 
symmetry of the function: 

Ik=∫
−∞

+∞

(1+u2 )
−
k+1

2 √k du=2√k∫
0

+∞

(1+u2)
−
k+1

2
du

Let J k  be the integral which verify: I k=2√k J k .

We first consider the case where k  is even: k=2n

so J n=∫
0

+∞

(1+u2)
−n−

1

2
du=∫

0

+∞
1

√1+u2

1

(1+u2)n
du

but J n=∫
0

+∞
1

√1+u2

1+u2−u
2

(1+u2)
n du then

J n=J n−1−∫
0

+∞
1

√1+u2

u
2

(1+u2)
n du , let Kn=∫

0

+∞
1

√1+u2

u
2

(1+u2)
n du
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Integration by parts:

Kn=0+
1

2(n−1

2 )
J n−1=

J n−1

2n−1
  and  J n=

2n−2

2n−1
J n−1

then  J n=
2n−2

2n−1

2n−4

2n−3
J n−2=...=

2n−2

2n−1

2n−4

2n−3
...

2

3
J 1

For  J 1 : J 1=∫
0

+∞
1

(1+u2)3/ 2
du we do an integration by substitution 

u=sh x  23 so du=ch x dx give J 1=∫
0

+∞
1

ch
2
x
dx

and J
1
=[ thx ]+∞

0
=1

For J n :  J n=
n−1

n−1 /2
n−2

n−3 /2
...

1

3 /2
=

√πΓ(n)
2Γ(n+1/2)

then  J k=
√πΓ ( k2 )
2Γ( k+1

2 )
 

If we consider the case where k  is odd we obtain the same expression.

Eventually: 

23 sh x : hyperbolic sine with sh x=
e
x−e

−x

2
, ch x : hyperbolic 

cosine with ch x=
e
x+e

−x

2
 and thx=

sh x

ch x
.

217

∫
−∞

+∞

f k(x )dx=
1

√k π

Γ (k+1

2 )
Γ( k2 )

I k=
1

√k π

Γ ( k+1

2 )
Γ( k2 )

2√k
√πΓ( k2 )

2Γ( k+1

2 )
=1



E11: Variance of Student's t-distribution   Exercise on page 124

V (X)=E(X 2)−E (X )2=E (X 2)=∫
−∞

+∞

x
2
f k (x )dx

This integral is convergent if k⩾3 .

First if k  is even, with the results of the previous exercise,  k=2n :

V (X)= 2k
√π

Γ( k+1

2 )
Γ( k2 )

∫
0

+∞
u

2

(1+u2 )
k+1

2

du= 4n
√π

Γ(n+ 1

2 )
Γ (n)

K
n

We had found: K n=
J n−1

2n−1
=

√πΓ(n−1)

2 (2n−1)Γ(n−1/2)

Kn=
√πΓ(n)(n−1 /2)

2(2n−1)(n−1)Γ(n+1 /2)
=

√πΓ(n)
4 (n−1)Γ(n+1 /2)

then: V (X)=
n

n−1
=

k /2
k /2−1

=
k

k−2

For k  odd we obtain the same expression.

E12: Sum of Student's t-distributions    Exercise on page 124

• For k=1 :

f Z (x)=∫
−∞

+∞

f 1( y) f 1 (x− y)dy=
1

π2∫
−∞

+∞
1

1+ y2

1

1+(x− y)2
dy

Then using a software of symbolic calculation we find:

f Z (x)=
1

2π
1

1+x2 /4
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V (X)= 1

√k π

Γ ( k+1

2 )
Γ( k2 )

∫
−∞

+∞
x

2

(1+ x
2

k )
k+1

2

dx= 2

√k π

Γ (k+1

2 )
Γ (k2 )

∫
0

+∞
ku

2√k

(1+u2)
k+1

2

du



In this case we find the general form of a Student for which k=1 .

• For k=3 :

f f 3∗f 3
( x)=∫

−∞

+∞

f 3 (y) f 3(x− y)dy=
5√3

12π
1+x2 /60

(1+x2 /12)3

We do not recognize the general form of a Student.

• For k=5 :

f f 5∗f 5
( x) =

400√5

3 π
x

4+120 x
2+8400

( x2+20)5

We do  not  recognize  the  general  form of  a  Student.  The  Kurtosis 
coefÏcient  β2 is  6  whereas  the  degree  of  the  polynomial  in  the 
denominator minus the degree of the polynomial in the numerator is 6. 
This data does not correspond to a Student. A table presented below 
summarizes the different properties of the first Students. 

• For k=7 :

f f 7∗f 7
(x) =

10976 √7

25π
5 x

6+1092x
4+112112 x

2+9417408

(x2+28)7

We do not recognize the general form of a Student. We can again study 
the form factors: the  kurtosis  β2 is 4,  β2 is 50 whereas the degree of 
the polynomial in the denominator minus that of the numerator is 8.
This data does not correspond to a Student. 
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k d° V β2 β4 f
k
(x ) f

k
(0)

1 2 - - - 1
π

1

1+ x2

≃0.318

2 3 - - - 1

2√2
1 /(1+ x

2

2 )
3

2
≃0.354

3 4 3 - - 2

√3 π
1/(1+ x

2

3 )
2 ≃0.366

4 5 2 - -
3

8
1/(1+ x

2

4 )
5

2
≃0.375

5 6 5/3
≃1.67

9 - 8

3√5 π
1 /(1+ x

2

5 )
3 ≃0.380

6 7 3/2
=1.5

6 -
15

16√6
1 /(1+ x

2

6 )
7

2
≃0.383

7 8 7/5
=1.4

5 125 16

5√7 π
1 /(1+ x

2

7 )
4 ≃0.385

8 9 4/3
≃1.33

9/2
=4.5

67.5
35

64 √2
1 /(1+ x

2

8 )
9

2
≃0.387

9 10 9/7
≃1.29

21/5
=4.2

49 128

105π
1 /(1+ x

2

9 )
5 ...

10 11 5/4
=1.25

4 ... ...

11 12 11/9
≃1.22

27/7
≃3.9

12 13 6/5
=1.2

15/4
=3.75

...

∞ 1 3 15 1/√2 π e
−x

2/ 2 ≃0.399
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E13: Chi-squared distribution       Exercise on page 124

f
1
( x)= 1

√2π x
e
−

x

2 f
2
(x)= 1

2
e
−
x

2

f
3
( x)=√ x

2π
e
−
x

2 f
10
(x)= x

4

768
e
−
x

2

E14: Product of distributions     Exercise on page 124

1. W = ln Z = ln X +ln Y = U + V. First  we are looking for the  
probability density of U and V, after we use a convolution to determine 
the distribution of the sum, and eventually we find the Z = eW density.

2. a. U and V densities:  f U ,V (x)={ 0 x⩽0

e
x

0<x<ln 2

0 x⩾ln 2

W density: f W ( x )=∫
−∞

+∞

f U ( y )f V (x− y )dy

After calculation:  f W (x )={
0 x⩽0

x e
x

0< x≤ln 2

(2 ln2−x) ex ln 2<x<2 ln 2

0 x⩾2ln 2

Z density:  f Z (x)=
1

x
f W ( ln x )   if x>0 and zero otherwise. 

After calculation:   f Z (x)={
0 x⩽1

ln x 1<x≤2

2ln 2− ln x 2<x<4

0 x⩾4

2. b. File for the simulation on a spreadsheet:
 www.incertitudes.fr/livre/ProduitXY.ods
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E15: Sum of exponentials   Exercise on page 125

1. Exponential distribution:
f X (x )={ 0 if x≤0

λ e
−λ x

if x>0

Sum of exponential distributions: f S2
( x)=∫

−∞

+∞

f X1
(y) f X2

(x− y)dy

Non-zero integral if y>0 and x-y>0 and then 0<y<x:

f S2
( x )=λ2

e
−λ x∫

0

x

dy and f S2

( x )={ 0 if x≤0

λ2
x e

−λ x
if x>0

2.  If  we  continue  we  obtain  the  law  of  S3=S2+X3 using  the  same 

method: f S3
(x )=∫

−∞

+∞

f S2
( y )f X3

(x− y )dy , nonzero if 0<y<x.
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f S3
(x )=λ3

e
−λ x∫

0

x

y dy and f S3
(x)={

0 if x≤0

λ3 x
2

2
e
−λ x

if x>0

We thus prove by induction the law of Sn:

f Sn
(x) = {

0 if x≤0

λn x
n−1

(n−1)!
e
−λ x

if x>0

3. The law of Mn is an afÏne function of Sn: f
M n

(x)=n f
Sn
(n x)

then: f M n
(x) = {

0 if x≤0

n
n λn x

n−1

(n−1)!
e
−n λx

if x>0

E16: Inverse distribution   Exercise on page 125

1. FY ( y)=P (Y≤y)=P(X≥1/ y)=1−P (X<1/ y)

so F
Y
( y )=1−F

X
(1 / y)  and f Y ( y )=

1

y
2
f X ( 1

y ) .

2. a.

f T n
( x) = {

0 if x≤0

n
n λn

(n−1)!xn+1
e
−
n λ
x if x>0

    b.  f Y ( y)=
1

y
2

1
π

1

1+ 1

y
2

=
1
π

1

1+ y 2

The inverse of a Cauchy distribution is also a Cauchy distribution.
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Chapter IV : Estimators 

E1: Estimators of the mean     Exercise on page 148

E(A3)=(E(X1)+E(X2)+E(X3))/3 (expectation linearity).
Then: E(A3)=3xm/3  and  E(A3)=m. Also:  E(B3)=m.

On the other hand:  E(C3)=4/3 m.

Conclusion: A3 and B3 are estimators of m. C3 is not an estimator of m. 
A3 and B3 are unbiased.

V(A3)=1/32 (V(X1)+V(X2)+V(X3)) (independent variables).
Then: r A3

(m )=V (A3)=σ
2/3 .

V(B3)=1/62 V(X1)+22/62 V(X2)+32/62 V(X3) 
and rB3

(m)=V (B3)=7 σ
2/18 .

Conclusion: r A3
(m )<rB3

(m)  and A3 is a better estimator of the mean 
than B3.

E2: Homokinetic Beam     Exercise on page 148

∑
i=1

100

v
i
=121.3×103   and  ∑

i=1

100

v
i

2=152.3×106

From the course we have the following unbiased estimator of the mean 

vm: T n
=V

n
=1

n
∑
i=1

n

V
i .

So: vm
= 1

100
∑
i=1

100

v
i  and vm=1213 m/s.

From  the  course  we  have  the  following  unbiased  estimator  of  the 

variance σV

2
:

 R
n

2=
∑
i=1

n

(V i−V̄ n)
2

n−1
= n

n−1

∑
i=1

n

(V i−V̄ n)
2

n
= n

n−1
(∑i=1

n

V i ²

n
−V̄

n

2) . 

Then: σV
2=100

99
[ 1

100
∑
i=1

100

vi
2−( 1

100
∑
i=1

100

v i)
2

]  and σV

2=52.15×10
3 .
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Now in accordance with the central limit theorem we have shown that 

V (T
n
)=

σV

2

n
. The sample size is sufÏcient and the distribution of the 

estimator has a Gaussian profile:

v=vm±tσT n
=vm±t∞ ,95%σV /√n=1213±1.96×228/10

and v=1213±45 m/s with 95% confidence.

E3: Two estimators      Exercise on page 149

1. Whatever θ Σpi=1, besides 0<pi<1 that's why θ ∈ ]0,1/4[.

2. E(X)=0x3θ+1xθ+2x(1-4θ) so E(X)=2-7θ.  E(X2)=4-15θ.
V(X)=4-15θ - (2-7θ)2  and  V(X)=θ(13-49θ).

3. E(Tn)=aE(Xn)+b (expectation linearity).
and E(Xn)=1/n.ΣE(Xi)=E(X) then E(Tn)=a(2-7θ)+b=θ (not biased)
and a=-1/7 and b=2/7. So Tn=(2-Xn)/7.
V(Tn)=1/49.V(Xn) but V(Xn)=V(X)/n then V(Tn)=θ(13-49θ)/49n

4. E(Yi)=θ then E(Zn)=nθ and  E(Un)=θ,  estimator unbiased.

Values of Y 0 1

Probabilities 1-θ θ

V(Un)=1/n2.V(Zn) but V(Zn)=nV(Y) and V(Y)=θ- θ2, V(Un)=θ(1-θ)/n.

5. X100=(0x31+1x12+2x57)/100=1.26  T100=(2-1.26)/7 and θT≃0.106
rT(θ)=V(T100)≃0.106(13-49⨉0.106)/4900 and rT(θ)=V(T100)≃1.7⨉10-4.
U100=12/100 then θU=0.12.        V(U100)=0.12⨉0.88/100 and
rU(θ)=V(U100)≃10.6⨉10-4. rT(θ) < rU(θ) : We prefer  T100.
And Tn in general because rT - rU = -36θ/49n < 0 whatever θ and n.

E4 : Ballot boxes      Exercise on page 150

E(Pi)=p wit i= 1 or 2 (expectation of a binomial distribution).
E(T)=(E(P1)+E(P2))/2=2p/2 and E(T)=p.
E(U)=xp+(1-x)p and E(U)=p.
We have two estimators unbiased of p.
V(Pi)=nipq with q=1-p (variance of a binomial distribution).
V(T)= 1/4(V(P1)+V(P2)) because P1 and P2 are independent variables.
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Then V(T)=(n1+n2)pq/4. Also V(U)= (x2n1 + (1-x)2n2)pq.
dV(U)/dx= (2xn1 -2(1-x)n2)pq=0 and xopt=n2/(n1+n2).
V(U)=n1n2pq/(n1+n2) and V(U)-V(T)= - (n1-n2)2/4(n1+n2).
U has a mean square error smaller than V, then U is a better estimator 
than V for xopt (U=V if  n1=n2).

E5: Continuous variable       Exercise on page 150

1. We have a positive density.

 Let calculate the integral ∫
−∞

∞

f ( x)dx  and show the value is 1:

 I A=∫
1

A
a

x
a+1

dx=a [−x
−a /a ]A

1
=1−1 /Aa

 and lim
A→+∞

I A=1 .

2. J A=∫
1

A
ax

x
a+1

dx=a[x−a+1/(−a+1)] A
1

 and E(X )=
a

a−1

3. L(xi ; a)=∏
i=1

n

f (xi ; a)=∏
i=1

n
a

xi
a+1
=

a
n

(∏ x i)
a+1

then  ln L=n ln a−(a+1)∑
i=1

n

ln x i  and  
d ln L
da

=
n

a
−∑

i=1

n

ln x i

and d ln L
da

=0 give a=
n

∑ ln x i

=
n

ln (∏ xi)
.

Method of Moments: x̄=
a

a−1
 and a=

x̄

x̄−1
.

4. 

⦁ Maximum Likelihood: â≃
8

ln (14.18)
 and â≃3.02 .

⦁ Method of Moments:  x̄≃1.52  and â≃2.94 .
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5.  K A=∫
1

A
a

x
a−1

dx=
a

2−a
[1/ xa−2]A

1
 this integral tends to a finite 

limit only if a> 2. Otherwise the integral is divergent and the variance 
is not defined.

If a>2 E(X2)=
a

a−2
 and V (X)=

a

(a−2)(a−1)2
.

6. We want to simulate X with a uniform distribution U(0,1). We use 
the inversion method. The cumulative distribution function give: 

F(x)=1−
1

x
a= y  and x=

1

(1− y )1 /a
 so X=

1

U
1/a .

We  obtain  for  our  sample  of  size  n=8  and  N=10,000  trials  the 
following distribution:

Simulation of fX(x) for a=3.02

We  find  by  the  simulation:  E(X)≃1.49  and  σX≃0.85,  values  that 
correspond to the theoretical values.

For  the  maximum  likelihood  estimator  we  have  the  following 
distribution for N=10,000:
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Simulation with the maximum likelihood estimator for a=3.02

We find by the simulation a mean 3.44 and a standard deviation 1.4 .

For  the  method  of  moments  estimator  we  have  the  following 
distribution for N=10,000:

Simulation with the method of moments estimator for a=2.94
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We find by the simulation a mean 3.54 and a standard deviation 1.4 .

In both cases we have significant biases. The mean, the expectation of 
the estimator, is well above the point estimate of a. The variance is also 
important,  for  example  at  90%  with  the  method  of  the  maximum 
likelihood, the interval of a is between 1.8 and 6.1 approximately.
At this stage of the study we are not assured of an asymptotically zero 
bias,  nor  of  a  convergence.  Simulations  should  be  carried  out  for 
different sample sizes in order to conjecture the evolution as a function 
of n of bias and mean square error.
We can also undertake an analytical calculation of the distribution of 
estimators by product of convolutions and composition of functions.

Simulations on the LibreOfÏce spreadsheet:
www.incertitudes.fr/livre/Simul5.ods

E6: Linear Density      Exercise on page 151

1. ∫
0

1

(a x+b)dx=
a

2
+b=1  and b=1−

a

2

Moreover f(0) and f(1) must be positive hence: -2 ≤ a ≤ 2.

2. E(X )=∫
0

1

(a x ²+b x )dx=
a

3
+
b

2
 and E(X )=

1

2
+

a

12

E(X2)=
a

4
+
b

3
=

1

3
+

a

12
 and V (X)=

1

3
+

a

12
−(1

2
+

a

12 )
2

so  V (X)=
1

12
−

a
2

144
=

12−a
2

144

3. Xn
=1

n
∑
i=1

n

X
i
=1

2
+ â

12
 and T n=â=12(Xn−

1

2)
E(T n)=a , estimator unbiased.

V (T n)=144×
1

n
2
×nV ( X)  and V (T

n
)=12−a

2

n

4. With the estimator of question 3.: am≃0.59.
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We have a linear relation between the estimator of  a and that one of 
the mean, thus, as the mean, the estimator of a obeys the central limit 
theorem and in the case of the large numbers: a=am ± t.s/√n. Here, 
n=9, the sample is too small for this method. Nor can we use Student's 
distribution because the distribution of the population is linear and not 
Gaussian.  We could  do  then  an  integral  calculation  or  a  numerical 
simulation. 

E7: Estimators for the exponential law    Exercise on page 151

1. E(T n)=
n
n λn

(n−1)!
∫
0

+∞
e
−
nλ
x

x
n dx , let u=

n λ
x

 and

E(T n)=
n λ

(n−1)!
∫
0

+∞

u
n−2

e
−u
dx=

nλ
(n−1)!

In . With an integration

 by parts: In=(n−2)I
n−1  then In=(n−2)!  because I3

=1 .

So:  E(T n)=
n

n−1
λ   and  b

T n

(λ)= λ
n−1

.

E(T n

2)=
n

2λ2

(n−1)!
In−1=

n
2λ2

(n−1)(n−2)
,  V (T n)=

n
2λ2

(n−2)(n−1)2

and rT n
(λ)=λ2 (n+2)

(n−2)(n−1)
.

2.  E(W n)=λ  and  V (W n)=rW n

(λ)= λ2

n−2
 (using the properties 

of expectation and variance).

3. We prefer Wn to estimate λ because unlike Tn its bias is zero and 
moreover its mean square error is lower.
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E8 : Decays   Exercise on page 152

1. Let us make a false reasoning:
Average of the ten measured lifetimes: m≃2.60 μs.
Sample standard deviation:  s≃2.24 μs.
Student's t-value: t≃1.83 (9 degrees of freedom and 90% confidence).
Central limit theorem: m=2.6 ± 1.3 μs with 90% confidence.
This result is a good estimate for the mean (zero bias, controlled risk-
mean square error).
For  λ,  the  inverse  of  the  mean,  we  now  use  the  uncertainty 
propagation formula:  λ=1/m  then  Δ λ=Δm/m2

So:  λ = 0.39 ± 0.19 /μs with a confidence of 90%.

Comments : 
1. Here the central limit theorem can not be applied because we clearly 
have a small sample (n=10). Moreover, although Student's distribution 
can be used for small numbers, it is used only when the population is 
normal,  which  is  not  the  case  here  because  it  is  an  exponential 
distribution. If we had taken t∞ it was also false because n small. One 
can imagine that to enlarge with the Student would make it possible to 
counterbalance the small number, but it is a rush job and it is false! 
2. The uncertainty propagation formula is an approximation, it is exact 
if all distributions of probabilities have the same form, here it is not the 
case. However, the approximation is correct and the calculation is fast. 
But nothing assures us that we are with a confidence of 90%, maybe a 
little less or a little more. We do not control our estimate here.

2. By applying a linear function and according to the exercise on page 
151:

f Wn
(x )=

n

n−1
f Tn
(
n x

n−1
)=

(n−1)n−1λn

(n−2)!xn+1
e
−
(n−1)λ

x

We then integrate on the first 5 percentiles and then the first 95 
percentiles to obtain the limits of the confidence interval:

 ∫
0

λmin

fW 10
(x)dx=0.05   and  ∫

0

λmax

fW 10
(x)dx=0.95

By numerical calculation of the integrals: λmin≃0.221 and λmax≃0.639 .

 And finally: λ=0,385 +0,254

−0,164
 /μs with 90% confidence.
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3. We generate 10 identical and independent exponential distributions 
Xi from ten independent uniform continuous distributions Ui(0,1):

Xi = - ln(Ui) / λ
We take λ as the point estimate obtained with the sample.
Here n=10, then: W10=9/(X1+X2+...+X10). The computer performs this 
calculation N=10,000 and the 10000 results for W10 are sorted by class 
and placed on a graph to create the W10 sampling distribution. With the 
discretized cumulative distribution function we evaluate the positions 
of the 5th and 95th centiles: x5%≃0.22 and x95%≃0.64 .

Then:  λ=0.39 +0.25

−0.17
 /μs with a confidence of 90%.

This result fully corroborates the exact calculation.

File created with the LibreOfÏce spreadsheet:

 www.incertitudes.fr/livre/Expos.ods
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Illustrations

3D representations in front of the table of contents and third thumbnail 
of the back cover.

A random walker moves in a plane. He throws two coins and looks at 
the results: two tails, one tail and one head, one head and one tail or 
two heads.  The first  coin  tells  him if  he  has  to  make  a  first  move 
towards the East or the West, the second if he has to make a second 
step towards the South or the North. Thus at each time interval Δt he 
moves in the plane of two steps. During Δt the distance traveled by the 
walker is Δd = 2 p (p length of one step). 

At what distance from the starting point is the walker at the instant t? 
(after n time intervals: t = n Δt) 

For n=1, we draw the following tables:

0.5 1 1

-0.5 1 1
-0.5 0.5

                      

25% 25%

25% 25%

The center of the table is its starting point. On the abscissa x (direction 
East-West) the displacement is more or less one step (x=±p , p= Δd /2 
and  we  have  fixed  Δd=1).  Similarly  on  the  y-axis:  y=±p.  In  each 
square is indicated the number of possibilities to meet at this place. 
The second table indicates the probabilities (1/4, 4=2x2). 

In the four possibilities he is at a distance √2/2 from the point of origin. 
And,  in  terms  of  standard  deviation,  the  characteristic  distance  is 
s=√(4×1/√2)

2
/(4−1)≃0.816 .

For n=2, we draw the following tables:

1 1 2 1

0 2 4 2

-1 1 2 1

-1 0 1                  

6% 13% 6%

13% 25% 13%

6% 13% 6%
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For  example  to  be  at  (x=0  ;  y=-1),  there  are  two  possible  paths: 
(PF,PP) and (FP,PP). Standard deviation s2≃1.033 .
The walker has a one in four chance to be back to the starting point.

For n=3, we draw the following tables:

1.5 1 3 3 1

0.5 3 9 9 3

-0.5 3 9 9 3

-1.5 1 3 3 1

-1.5 -0.5 0.5 1.5          

2% 5% 5% 2%

5% 14% 14% 5%

5% 14% 14% 5%

2% 5% 5% 2%
    

s3≃1.234

For n=4, we draw the following tables:

2 1 4 6 4 1

1 4 16 24 16 4

0 6 24 36 24 6

-1 4 16 24 16 4

-2 1 4 6 4 1

-2 -1 0 1 2       

0.4% 1.6% 2.3% 1.6% 0.4%

1.6% 6.3% 9.4% 6.3% 1.6%

2.3% 9.4% 14% 9.4% 2.3%

1.6% 6.3% 9.4% 6.3% 1.6%

0.4% 1.6% 2.3% 1.6% 0.4%  

For n=5, we draw the following tables:

2.5 1 5 10 10 5 1

1.5 5 25 50 50 25 5

0.5 10 50 100 100 50 10

-0.5 10 50 100 100 50 10

-1.5 5 25 50 50 25 5

-2.5 1 5 10 10 5 1

-2.5 -1.5 -0.5 0.5 1.5 2.5        

0.1% 0.5% 1.0% 1.0% 0.5% 0.1%

0.5% 2.4% 4.9% 4.9% 2.4% 0.5%

1.0% 4.9% 9.8% 9.8% 4.9% 1.0%

1.0% 4.9% 9.8% 9.8% 4.9% 1.0%

0.5% 2.4% 4.9% 4.9% 2.4% 0.5%

0.1% 0.5% 1.0% 1.0% 0.5% 0.1%
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For n=6, we draw the following tables:

3 1 6 15 20 15 6 1

2 6 36 90 120 90 36 6

1 15 90 225 300 225 90 15

0 20 120 300 400 300 120 20

-1 15 90 225 300 225 90 15

-2 6 36 90 120 90 36 6

-3 1 6 15 20 15 6 1

-3 -2 -1 0 1 2 3    

0.0% 0.1% 0.4% 0.5% 0.4% 0.1% 0.0%

0.1% 0.9% 2.2% 2.9% 2.2% 0.9% 0.1%

0.4% 2.2% 5.5% 7.3% 5.5% 2.2% 0.4%

0.5% 2.9% 7.3% 9.8% 7.3% 2.9% 0.5%

0.4% 2.2% 5.5% 7.3% 5.5% 2.2% 0.4%

0.1% 0.9% 2.2% 2.9% 2.2% 0.9% 0.1%

0.0% 0.1% 0.4% 0.5% 0.4% 0.1% 0.0%

Hence the evolution of the quadratic mean distance from the starting 
point as a function of time:

0 1 2 3 4 5 6

0.00 1.00 1.41 1.73 2.00 2.24 2.45

s (2p) 0.000 0.816 1.033 1.234 1.417 1.582 1.732

t (Δt)

√t

We plot the curves s as a function of t and s as a function of √t:

0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

          0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

We find a much better correlation in √t. Indeed we saw directly that the 
distance at the origin did not evolve proportionally to time, for n=2 we 
are about one unit of the origin, so we should be towards 3 for n=6.
This variation in  √t is characteristic of  diffusion phenomena and here 
finds its analogy with the compensation of errors in √n. 
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IX. TABLES / Index

 A. Standard normal distribution 

F (z)=∫
−∞

z

f (z )dz=P (Z⩽z)  
P (Z> z)=1−P(Z⩽z)

P (Z⩽−z)=P (Z> z) Example : P (Z⩽1.67)≃0.95254
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f (z)= 1

√2π
e
−

z2

2

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998



 B. Student's t-values

Student
Confidence (%)value

t 50 80 90 95 98 99 99.5 99.8 99.9
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1 1.00 3.08 6.31 12.7 31.8 63.7 127 318 637

2 0.82 1.89 2.92 4.30 6.96 9.92 14.1 22.3 31.6

3 0.76 1.64 2.35 3.18 4.54 5.84 7.45 10.2 12.9

4 0.74 1.53 2.13 2.78 3.75 4.60 5.60 7.17 8.61

5 0.73 1.48 2.02 2.57 3.36 4.03 4.77 5.89 6.87

6 0.72 1.44 1.94 2.45 3.14 3.71 4.32 5.21 5.96

7 0.71 1.41 1.89 2.36 3.00 3.50 4.03 4.79 5.41

8 0.71 1.40 1.86 2.31 2.90 3.36 3.83 4.50 5.04

9 0.70 1.38 1.83 2.26 2.82 3.25 3.69 4.30 4.78

10 0.70 1.37 1.81 2.23 2.76 3.17 3.58 4.14 4.59

11 0.70 1.36 1.80 2.20 2.72 3.11 3.50 4.02 4.44

12 0.70 1.36 1.78 2.18 2.68 3.05 3.43 3.93 4.32

13 0.69 1.35 1.77 2.16 2.65 3.01 3.37 3.85 4.22

14 0.69 1.35 1.76 2.14 2.62 2.98 3.33 3.79 4.14

15 0.69 1.34 1.75 2.13 2.60 2.95 3.29 3.73 4.07

16 0.69 1.34 1.75 2.12 2.58 2.92 3.25 3.69 4.01

17 0.69 1.33 1.74 2.11 2.57 2.90 3.22 3.65 3.97

18 0.69 1.33 1.73 2.10 2.55 2.88 3.20 3.61 3.92

19 0.69 1.33 1.73 2.09 2.54 2.86 3.17 3.58 3.88

20 0.69 1.33 1.72 2.09 2.53 2.85 3.15 3.55 3.85

22 0.69 1.32 1.72 2.07 2.51 2.82 3.12 3.50 3.79

24 0.68 1.32 1.71 2.06 2.49 2.80 3.09 3.47 3.75

26 0.68 1.31 1.71 2.06 2.48 2.78 3.07 3.43 3.71

28 0.68 1.31 1.70 2.05 2.47 2.76 3.05 3.41 3.67

30 0.68 1.31 1.70 2.04 2.46 2.75 3.03 3.39 3.65

40 0.68 1.30 1.68 2.02 2.42 2.70 2.97 3.31 3.55

50 0.68 1.30 1.68 2.01 2.40 2.68 2.94 3.26 3.50

60 0.68 1.30 1.67 2.00 2.39 2.66 2.91 3.23 3.46

70 0.68 1.29 1.67 1.99 2.38 2.65 2.90 3.21 3.44

80 0.68 1.29 1.66 1.99 2.37 2.64 2.89 3.20 3.42

90 0.68 1.29 1.66 1.99 2.37 2.63 2.88 3.18 3.40

100 0.68 1.29 1.66 1.98 2.36 2.63 2.87 3.17 3.39

200 0.68 1.29 1.65 1.97 2.35 2.60 2.84 3.13 3.34

300 0.68 1.28 1.65 1.97 2.34 2.59 2.83 3.12 3.32

500 0.67 1.28 1.65 1.96 2.33 2.59 2.82 3.11 3.31

1000 0.67 1.28 1.65 1.96 2.33 2.58 2.81 3.10 3.30

∞ 0.67 1.28 1.64 1.96 2.33 2.58 2.81 3.09 3.29
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 C. Chi-square values
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χ
Probability α to reject the hypothesis while it is true (%)

99 90 75 50 30 20 10 5 2 1 0,1

n
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e
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1 0.000157 0.0158 0.102 0.455 1.07 1.64 2.71 3.84 5.41 6.63 10.8

2 0.0201 0.211 0.575 1.386 2.41 3.22 4.61 5.99 7.82 9.21 13.8

3 0.115 0.584 1.21 2.366 3.66 4.64 6.25 7.81 9.84 11.3 16.3

4 0.297 1.06 1.92 3.357 4.88 5.99 7.78 9.49 11.7 13.3 18.5

5 0.554 1.61 2.67 4.351 6.06 7.29 9.24 11.1 13.4 15.1 20.5

6 0.872 2.20 3.45 5.348 7.23 8.56 10.6 12.6 15.0 16.8 22.5

7 1.24 2.83 4.25 6.346 8.38 9.80 12.0 14.1 16.6 18.5 24.3

8 1.65 3.49 5.07 7.344 9.52 11.0 13.4 15.5 18.2 20.1 26.1

9 2.09 4.17 5.90 8.343 10.7 12.2 14.7 16.9 19.7 21.7 27.9

10 2.56 4.87 6.74 9.342 11.8 13.4 16.0 18.3 21.2 23.2 29.6

11 3.05 5.58 7.58 10.34 12.9 14.6 17.3 19.7 22.6 24.7 31.3

12 3.57 6.30 8.44 11.34 14.0 15.8 18.5 21.0 24.1 26.2 32.9

13 4.11 7.04 9.30 12.34 15.1 17.0 19.8 22.4 25.5 27.7 34.5

14 4.66 7.79 10.2 13.34 16.2 18.2 21.1 23.7 26.9 29.1 36.1

15 5.23 8.55 11.0 14.34 17.3 19.3 22.3 25.0 28.3 30.6 37.7

16 5.81 9.31 11.9 15.34 18.4 20.5 23.5 26.3 29.6 32.0 39.3

17 6.41 10.1 12.8 16.34 19.5 21.6 24.8 27.6 31.0 33.4 40.8

18 7.01 10.9 13.7 17.34 20.6 22.8 26.0 28.9 32.3 34.8 42.3

19 7.63 11.7 14.6 18.34 21.7 23.9 27.2 30.1 33.7 36.2 43.8

20 8.26 12.4 15.5 19.34 22.8 25.0 28.4 31.4 35.0 37.6 45.3

21 8.90 13.2 16.3 20.34 23.9 26.2 29.6 32.7 36.3 38.9 46.8

22 9.54 14.0 17.2 21.34 24.9 27.3 30.8 33.9 37.7 40.3 48.3

23 10.2 14.8 18.1 22.34 26.0 28.4 32.0 35.2 39.0 41.6 49.7

24 10.9 15.7 19.0 23.34 27.1 29.6 33.2 36.4 40.3 43.0 51.2

25 11.5 16.5 19.9 24.34 28.2 30.7 34.4 37.7 41.6 44.3 52.6

26 12.2 17.3 20.8 25.34 29.2 31.8 35.6 38.9 42.9 45.6 54.1

27 12.9 18.1 21.7 26.34 30.3 32.9 36.7 40.1 44.1 47.0 55.5

28 13.6 18.9 22.7 27.34 31.4 34.0 37.9 41.3 45.4 48.3 56.9

29 14.3 19.8 23.6 28.34 32.5 35.1 39.1 42.6 46.7 49.6 58.3

30 15.0 20.6 24.5 29.34 33.5 36.3 40.3 43.8 48.0 50.9 59.7

31 15.7 21.4 25.4 30.34 34.6 37.4 41.4 45.0 49.2 52.2 61.1

32 16.4 22.3 26.3 31.34 35.7 38.5 42.6 46.2 50.5 53.5 62.5

33 17.1 23.1 27.2 32.34 36.7 39.6 43.7 47.4 51.7 54.8 63.9

34 17.8 24.0 28.1 33.34 37.8 40.7 44.9 48.6 53.0 56.1 65.2

35 18.5 24.8 29.1 34.34 38.9 41.8 46.1 49.8 54.2 57.3 66.6

36 19.2 25.6 30.0 35.34 39.9 42.9 47.2 51.0 55.5 58.6 68.0

37 20.0 26.5 30.9 36.34 41.0 44.0 48.4 52.2 56.7 59.9 69.3

38 20.7 27.3 31.8 37.34 42.0 45.1 49.5 53.4 58.0 61.2 70.7

39 21.4 28.2 32.7 38.34 43.1 46.2 50.7 54.6 59.2 62.4 72.1

40 22.2 29.1 33.7 39.34 44.2 47.3 51.8 55.8 60.4 63.7 73.4
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Absolute zero.................................................................................63
Accuracy........................................................................................33
Aging............................................................................................107
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Bernoulli distribution...........................................................105, 121
Bias...............................................................................................128
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Cumulative distribution function..........................................107, 116
Decay...........................................................................................152
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Degrees of freedom........................................................................13
Derivatives of geometric series....................................................170
Diffusion phenomena....................................................................237
Discretization error......................................................................154
Error of the first kind.....................................................................26
Error of the second kind................................................................26
Estimator......................................................................................128
Expectation.....................................................................................20
Exponential distribution...............................................112, 123, 133
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Frequency.........................................................................................6
Function of a continuous distribution...........................................116
Gamma function...........................................................................170
Gaussian distribution................................................................10, 19
Gaussian distribution 3D................................................................42
Geometric distribution.........................................................106, 122
Geometric mean...............................................................................2
Homokinetic Beam......................................................................148
Hypothesis test...............................................................................24
Integral.........................................................................................168
Integration by parts......................................................................169
Integration by substitution............................................................169
Interval estimate...........................................................................139
Inverse distribution.......................................................................125
Inverse transform sampling..........................................................119
Inverse transformation method.....................................................119
Kurtosis........................................................................104, 115, 169
Least squares method...............................................................59, 76
Likelihood....................................................................................135
Line spectrum.................................................................................91
Linear density...............................................................................151
Linear regression............................................................................59
Linearization..................................................................................68
Mean deviation...........................................................................4, 37
Mean Square Error.......................................................................129
Memoryless property....................................................................107
Method of Maximum Likelihood.................................................135
Method of Moments.....................................................................131
Moment................................................................................104, 169
Negative binomial distribution.....................................................122
Nonlinear regression.................................................................76, 81
Normal distribution......................................................................113
Numerical simulation...................................................................119
Parabolic regression.......................................................................79
Poisson distribution..............................................................108, 123
Polynomial regression.....................................................................78
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Power of the test.............................................................................29
Precision.........................................................................................33
Prediction.......................................................................................63
Prediction Interval..............................................................12, 63, 97
Prism..............................................................................................91
Probability density function............................................................19
Product of distributions................................................................124
Propagation of standard deviations formula.................................164
Propagation of uncertainties formula.....................................53, 164
Random errors..............................................................................165
Range.......................................................................................3, 156
Refractive index..............................................................................90
Repeatability..................................................................................33
Reproducibility...............................................................................33
Residual....................................................................................60, 77
Resolution..............................................................................33, 154
Sample standard deviation................................................................3
Sampling distribution.....................................................................10
Skewness......................................................................104, 115, 169
Small variations method.................................................74, 100, 205
Student's t-distribution.........................................................113, 123
Student's t-value.............................................................................61
Sum of binomial distributions......................................................122
Sum of exponentials.....................................................................125
Sum of Gaussians.........................................................................123
Sum of independent random variables.........................................104
Sum of Student's t-distributions...................................................124
Taylor series.........................................................................108, 168
Thermal conductivity......................................................................92
Triangular distribution..................................................................159
Uncertainty.....................................................................................13
Uncertainty calculations.................................................................54
Uniform distribution....................................................110, 123, 156
Variance.................................................................20, 104, 157, 162
Waiting time.................................................................................140
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