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Foreword

This handbook aims to be accessible to the major
public. This work is meant to be used as a pedagogical tool
and as a reference book. The following book represents
personal reflections on the probabilistic nature of measures
in science. In a classical curriculum these aspects are
seldom, if not at all, dealt with. It is important that the
experimental and practical foundations of science are
complementary to the theoretical lectures. There is a
scientific beauty that arises from the interaction between
theory and experience.

While introducing the fundamental principles of
statistics, this book explains how to determine uncertainties
in different experimental situations. Many examples come
from courses and practical work done in preparatory
classes for the engineering schools.

I hope you enjoy reading!

Thanks to the readers who by their questions, comments
and constructive criticisms make it possible to improve the
book.

Thanks to the life and to all those who have come before
me.
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I. RANDOM VARIABLE

A. How to measure a quantity ?

In what follows, X is a random variable and {x;} a
sample of n outcomes.

If we ask how many days are in a week, it is easy to
answer. Now, consider different groups of students who
have measured the thermal capacity of water' and have
obtained the following values : {5100; 4230; 3750; 4560;
3980} J/K/kg. How can we estimate the water capacity in
this situation? The answer will use a probabilistic approach.

B. The center of a distribution

How does one determine the most representative value
of a sample? There are different ways to define the center
of a distribution. For example, we have the mode, the
median and the mean. The mode is the value which occurs
with the greatest frequency in a data set. The median is the
middle of a distribution that divides the sample into two
parts whereby each half has an equal number of
observations. The most commonly used measure of the

1 puysiQuE : The amount of energy needed to raise the temperature of
one kilogram of mass by 1°C. That way, the water stores energy
and can then return it by decreasing its temperature. Tables : Cwaer =
4180 Joules per Celsius degree and per kilogram.



center 1S the mean. The mean is the sum of the observed
values divided by the number of observations :

n

2%

XXXt X,

X= also | x=1" :
n n
For the thermal capacity of water we have :
o= 5100+4230+3750+4560 + 3980 — 43047 | K/ kg

5

We have considered the arithmetic mean. We could have
used the geometric mean:

x={TTx

For instance for two speeds of 20 m/s and 40 m/s, the
geometric mean is V20m/s-40m/s=28.3m/s whereas
the arithmetic mean is of 30 m/s. The arithmetic mean is
used more often globally due to its conveniently simpler
calculation.

2 wmatH : To simplify the writing of a sum, the Greek letter sigma is
used as a shorthand and read as "the sum of all x i with i ranging
from 1 ton".



C. The dispersion of a distribution

In addition to locating the center of the observed values we
want to evaluate the extent of variation around the center.
Two data sets may have the same mean but may be differ-
ent with respect to variability. There are several ways to
measure the spread of data. Firstly the range is the differ-
ence between the maximum and minimum values in the
sample. The sample range of the variable is very easy to
compute, however it is sensitive to extreme values that can
be unrepresentative.

The sample standard deviation is preferred:

It is the most frequently used measure of variability.

For the thermal capacity of water we have :

\/ (5100—4324 2+ 4230—4324 )+

Sc

(3750— 4324+ 4560—4324 +(3980— 4324 )
4

and SC253OJ/K/kg



The mean deviation may also be used (see Exercise 1).

Using the standard deviation formula, dividing by n rather
than n- 1, will obtain the root mean square deviation (square
root of average square deviation). The choice of the
standard deviation is justified on page 130. Besides, the
values of n are often large and the difference is small.

D. Examples of distributions

Case 1 :

X, 6
X' 11
XlZ 9 5
X? | 10
x| 14,
x* | 1| 3
xS %’_
X/’ £
X° | 12
X,° 7
X110
X" 8 7 8 9 10 11 12 13 14 15 16 17 18 19
X, 9 x1
X113 1
X" 14 mean =10 standard deviation=2.07
X,®| 10 mode=9 range=7
x| 9 median=9.5 root mean square deviation=2.00




X1
X' | 15
X2 | 13
X® | 12
X' 13
X° | 14
x| 13
X’ | 16
x| 19
x° | 13
Xim 14
Xlli 10
X112 16
Xllz 14
X114 15
X®| 13
X11e 14
| x|
X' | 10
X? | 10
x® | 12
X' 11
X°
X,°
x| 10
X18
x?
le 11
Xlll 9
x| 11
X®| 10
X114 10
X®| 11
X116 10

Case 2 :

frequencies

10 11 12 13 14 15 16 17 18 19
x1

frequencies

mean =14
mode= 13
median= 14

standard deviation=2.00
range=9
root mean square deviation=1.94

Case 3 :

10 11 12 13 14 15 16 17 18 19
x1

mean =10
mode= 10
median= 10

standard deviation=1.03
range= 4
root mean square deviation=1.00



The mean is not always the most represented value (case 1
and 2) and in some cases does not appear at all. In case 3
the histogram is symmetrical and illustrating that the
median and mean are equal.

In the event that some values are represented several times,
we determine the frequency f; for each value x.

We have n= E f., where ¢ gives the number of different
i=1
values of x;.

The mean and standard deviation then become:

C

Z fixi o
_ = _
X=—— =

n

i=1 N

Sometimes the data can be grouped into class intervals. For
example, if we measure the size of the inhabitants of a city,
we can group all the inhabitants with a size between 160
cm and 170 cm within the same class interval. The number
of observations in this class is the frequency and the middle
of this class interval is the value assigned, here 165 cm (see
Exercise 5).

The more the histogram is concentrated around the center,
the more the standard deviation is small.



E. Central limit theorem

1) Population and samples

Consider a city of one million inhabitants. To survey
the population we can interview a sample of only one thou-
sand people drawn at random. Thanks to the statistical
tools, from this n=/000 individuals sample, we can have
information on the whole population. The larger the sample
size is, the more accurate the results will be. Let X be the
sample mean and s be the sample standard deviation. For
the population we denote w (Greek letter mu) the mean
and o (sigma) the standard deviation. The larger the sam-
ple, the more likely X and s are close to u and o respec-
tively.

In the case of opinion polls, samples are around one
thousand people. If we measure the size of one thousand
inhabitants selected randomly from the population of a city
of one million people, the average size of this sample is
likely to be close to the average size of the entire popula-
tion but has no reason to be equal.

Let us take the example of a coin toss. The coin is
balanced and the outcomes are heads or tails. In this case
the population is infinite and we can have an infinit number
of measurements. Furthermore, the probabilities are known
and we can determine the population features.



When the sample size becomes very large, it tends towards
the population : p=lim x °.

n— oo

We introduce here the concept of probability :

p,=lim — where p; is the probability of the outcome x;.

n-ow N

With this formula (using the formula page 6) we find the
population mean formula: KW=/ p;'X; .

Also if we consider all the events possible, we have
> p=1 (1=100%).

The outcome heads is associated with xy=0, and the out-
come ftails with x;=/. The coin is balanced as
po=pi1=1/2=0,5=50% and u=po.xo+p. xi.

Furthermore: o=Ilim s and with the formula for s page 6

we obtain 02\/2 p;(x,—u)* (for nlarge, n-1 is close to
n).

Eventually : 1=0,5 and 0=0,5 .

3 matH : Reads as «u is equal to the limit of x when 7 tends to
infinity».



Let us flip nine coins and collect a sample :
{0;1;1;0;1;1;1;0;0}.
Then we find X=0,56 and s=0,53 .

If this procedure is performed many times, each time we
would have a different result for x .

For example, if two other samples are taken:
{1;1;0;1; 1;0; 1; 1; 0} then X=0,67 and s=0,50
{0;1;0;0;0;0; 1;0; 0} then X=0,22 and s=0,44

‘What would be the distribution of these results as a whole?
(Called the sampling distribution)

The values obtained for the samples are generally different
from those of the population, but the larger the sample, the
more likely it is that the values are closer to those of the
population.

Case of a sample with n=50, where Xx=0,520 and
s=0,505 :

{00100011111110010111110001001101101000110000011101 }



2) The central limit theorem

CENTRAL LIMIT THEOREM !

Within a population we collect random samples of size n.
The mean of the sample X varies around the mean of the
population u with a standard deviation equal to c/Vn,
where o is the standard deviation of the population.

As n increases, the sampling distribution of X s
increasingly concentrated around u and becomes closer
and closer to a Gaussian distribution.

We will describe in due course what a Gaussian distri-
bution, also called normal distribution, is. For the moment
we will simply consider a bell curve. This is a very impor-
tant theorem. Whatever the form of the population distri-
bution, the sampling distribution tends to a Gaussian, and
its dispersion is given by the Central Limit Theorem.

This is illustrated through the following diagrams:
p P

sample
of size n

bl

=
I

On the left we have the probability p of an event x (popula-
tion distribution).

10



Hypothetically, for a city with a population of one million
inhabitants, p could represent the probability that one have
a given height x. If we could measure the height of all the
inhabitants, we could exactly determine their average
height u and the standard deviation 0. However, it is prag-
matically difficult, if not impossible, to measure a popula-
tion of that size. Therefore a sample size of only a thousand
inhabitants is taken to reduce the burden of labour. For this
to be as representative of the whole population as possible,
the thousand-person sample is picked randomly.

We obtain a thousand measures of height from x; to x;o.
From this sample of size n=1000 we calculate a mean X
and a standard deviation s. We think that X is close to g,
but at the same time there is no reason for it to be equal to
. We put this value of X on the right side of the figure on
page 10.

We take a new random sample of a thousand people and a
new value for X .

We then repeat this operation a great number of times. We
see on the right the distribution of the samples obtained:

o p Gaussian
samples
of size n
X

—X

Xy wen Xgeus Xpawa X

u X
population sampling distribution
distribution of the mean

11



3) Student's t-value and uncertainty

The central limit theorem applies to the limit of large
numbers. In the particular case where the distribution of
the population is normal we can apply it from »n small
thanks to the coeflicients of Student 7.

Prediction interval :

If u and o are known, the sampling distribution is also
Gaussian and the expected statistical fluctuations are with a
probability of p% between w—t,o/vVn and u+t,o/vVn .

The t-values are read on page 239.

Confidence interval :

In the case of the calculation of uncertainties ¢ and ¢ are
not known and we estimate them from the sample with x
and s. Due to a small statistic, there is widening given by
the Student's t-distribution:

_ S
=Xxtt—
" T

The Student's t-value depends on the sample size n and on
the confidence. If the confidence is 95%, we have 95 in 100
chance that u is between x—t-s/\/n and x+t-s/n .

12



We recognize here the notion of measurement uncertainty
Ax*

. S
x=x*+*Ax with Ax=t-—
Vn
A X is also called absolute uncertainty and A x/|x| rela-
tive uncertainty.

Let us take again the calorimetry experiment described on
page 1. We want to know the thermal capacity of the water
with a confidence of 95%. As is often the case in experi-
mental sciences, we consider that the data follow a normal
distribution, because by the influence of many independent
factors on the value of the measured quantities, we still ex-
pect, under the central limit theorem, to have Gaussian
fluctuations.

We find for four degrees of freedom (ddl=n-1) a Student's
tof 2.78.

From where : c=c¢+t-s,/\n=4320+660J/K/kg with
95% confidence.

Here following the dispersion of the values measured by
the students : Ac/€=15% . The calorimetry measure-

ments are usually imprecise. The expected value, known
here, is well within the range :

3660<4180<4980

In experimental sciences we endeavor to quantify all
natural phenomena. Yet, due to the very nature of the ex-

4 wmatH : Reads "delta x".

13



perimental approach, the various parameters which make it
possible to describe a experimental situation are not per-
fectly known. We do not have a simple numerical value as-
sociated with each characteristic, but an interval for a given
confidence. Strictly speaking, any experimental value must
associate its uncertainty with its confidence.

Exceptions:

» Large number samples: the size of the sample n is large
enough to be able to directly apply the central limit theo-
rem. The sampling distribution is normal regardless of the
distribution of the population. We do not have to worry
about Student's distribution which anyway identifies with a
Gaussian distribution in this case.

» Small samples and normality of the data: we apply the
Student law as before.

» Small samples with non-normality of data: For example,
we find by computing the skewness and kurtosis of the data
that they do not match a normal distribution. To counter
this, it is necessary to perform a case by case study. For in-
stance, when we have a uniform distribution of the popula-
tion, the prediction interval given on page 12 works from
n=2 (it is shown by using the data of the article Measure
with a ruler p154) . However for a binomial distribution
with parameters n=2 and p=0.24, the 50% prediction inter-
val contains 0% of the values... A more complex case on
page 146 shows for n = 12, in comparison with a numerical
simulation, that the central limit theorem underestimates
the confidence interval.

14



4) Examples

A large number of random factors will influence the
measurement of a physical quantity; independent factors,
which, whatever their natures will ultimately generate a
Gaussian distribution of observations. Let us consider two
examples, the toss of a coin and the roll of a six-sided die.

Consider the sample space for tossing a fair coin n
times. We count the number of tails. For one toss, we have
two outcomes possible, one with zero tails and one with
one tails.

For two tosses, we have four outcomes possible, one with
zero tails (H H), two with one tails (H'T or T H) and one
with two tails (T T). The more tosses that are thrown, the
closer we get to a Gaussian distribution.

,
one wo

toss tosses |
n=1 o

0

15



We can obtain the probability (the number of tails divided
by the number of possibilities 2") as a function of the
number of tails. For n = 1 we have the distribution of the
population and following the sampling distributions for
different values of n.

4 7
6 —_—
8 5
THH/TTH 4
: 3
HTH/ THT 5
three ' four 1
tosses HHHHHTHTTITTT ) fo55e5 ¢
° o 1 2 3 0 1 2 3 4
12 25
8
15
6
10
4
five 2 six S
tosses 0 fosses 0
012345 0123456

Similarly for the dice we enumerate the possibilities for
their sum and the distribution also tend towards a Gaussian.
For a single die, the sum simply corresponds to the value of
the die. We have a possibility for each value:

16



one die : 1

1 2 3 4 5 6

For two dice, there is only one possibility for the sum to be
two: 1 for the first die and 1 for the second die. For the sum
to be three, there are two possibilities: 1 and 2, or, 2 and 1.
The most likely with two dice is to obtain a sum of 7: (1,6)
(6,1) (2,5) (5,2) (3,4) (4,3).

two dice :

o - IN) w ENE— o~
| | | |

30

three dice :

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

17



For four dice, we already recognize the bell curve and the
profile is clearly of the Gaussian type:

160

140

120
100 -
80 -
60

40

Sfour 20
dice : 0

45678 9101112131415161718192021222324

On this last example, we check the validity of the central
limit theorem.

The population mean is :
w,=(1+2+3+4+5+6)/6=3.5

We verify that the sampling distribution mean is the same:
u,=14/6=3.5

The population standard deviation is :
o, =V2 p:(x,—u) then
0,=V1/6:(1-3.5 P +(2—3.5)%(3—3.5)*+(4—3.5)*+(5—3.5 F+(6—3.5)%]

and o,~171

18



also for four dice : o,=0,/Vn=0,/2~0.85. Now, on the
above curve, 40% from the maximum (explanation page
21), we have a deviation close to 3.5 (between 3 and 4),
and an average of 3,5/4~0.88 . It matches.

F. Gaussian distribution

1) Definition of continuous distribution

Some quantities are fundamentally continuous : time,
space, temperature, et cetera. Time is like fluid, it does not
jump from one value to another. A continuous random
variable can take any value in an interval of numbers and
has a continuum of possible values. On the other hand
when we throw a six-sided die, it is impossible to say "I got
2.35!". It is a forbidden value, only integer values from one
to six are allowed.

Thus, some probability distributions are discrete and
others continuous. For a die we have : p;=...=ps=1/6 and

n=6
Z p;=1. Now, if we are interested in the height of the
i=1

inhabitants of a city, there is a continuum of possibilities,
the distribution is continuous. We define the probability
density function p(x) with p(x)dx the probability to be be-
tween x and x+dx. Where dx is a small variation, and x+dx
is close to x. The continuous random variable probability
model assigns probabilities to intervals of outcomes rather
than to individual outcomes.

19



So, the probability that the event is realized on the set of
possible values is 100%:

f p(x)dx=1

X=—x0

Mean and variance in the continuous case :

u:f x-p(x)dx Vzozzz(x—u)zp(x)dx

2) Bell-shaped density curve

A continuous random variable X following normal distribu-
tion has two parameters: the mean u and the standard devi-
ation o. Density function :

2
X—
ag

1
2

P
P o ©

In the mathematic tools section page 168 some demonstra-
tions are performed.

5 watH : The mean is also called E(X), expectation of X. 0’=V(X) is
called variance of the random variable X. Properties
E(aX+b)=aE(X)+b, V(aX)=a’V(X) and V(X)=E(X*»-E(X).

20



We have represented two cases on the following graph:

Gauss
curves

The total area under the curve is always 1. The probability
concentrated within interval [u — o, w + o] is 0.68 :

w+o

[ p(x)dx=0.683..~68%

u—o

We evaluate the standard deviation at 60%. P :

p(uxo)p, =1//e~0.607

21



The probability concentrated within interval [n — 20, u +
20]1s 0.95:

f p(x)dx=0.954...~95%

The probability concentrated within interval [n — 30, pu +
30] is more than 0.99 :

[ p(x)dx=0.997...>99%

u—30

22



3) Standard normal distribution

A standard normal distribution Z is normally distributed
with a mean ¢ = 0 and a standard deviation ¢ = 1.

The distribution X is transformed into a distribution Z
using the following two transformations : x'=x—p

X_
and 7= H

then : p(z)z 1l .2

e
(0) V2Tt

23



G. Hypothesis test

Similarly to how to estimate the mean of an unknown
probability distribution, the central limit theorem is also
used for a hypothesis test. With a collected sample we have
used the properties of the sampling distribution to
determine a value and it's uncertainty. For the hypothesis
tests, we proceed in the other direction: the law of
probability is assumed known, so the sampling distribution
is perfectly known and we take a sample to define a
decision criterion allowing us to accept or reject the
hypothesis.

Using the mean we test a hypothesis Ho. This is re-
ferred to as the null hypothesis. It is an assumption made
on the probability distribution X. Let w and o be the mean
and standard deviation of X. We take from the population a
sample of size n large enough. The sample mean is x . If

x is between u—t,.o/vVn and u+t,.o/Vn then Hp is
accepted. However if X is outside of those values, the null
hypothesis is rejected (two-tailed test).

Population distribution Sampling
0 X known : p distribution :
H,
Central
Limite
Theorem
S >
h X T 0 X

[

Test on X —_—
Xy eeeXgee Xnenn Xy — H, H, H,

sample rejected accepted rejected
of size n
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We consider the coefficient z. of a normal distribution for a
p% confidence (or Student's t-value when n — o).

We can also use other characteristic intervals of the sam-
pling distribution. In general, the hypothesis Hy implies a
property A of the sampling distribution. Here, the involve-
ment is not deterministic but statistical and decision-mak-
ing proceeds differently.

Deterministic test case : H,= A
» If we observe A then Hy cannot be rejected.

 If we do not observe A then Hy is rejected®.

Statistical test case :

In p% of cases : H,=A
In (1-p)% of cases : H,=» A
* If we observe A then Hy cannot be rejected

with p% confidence.

e If we do not observe A then H is rejected, with a
risk to reject Hy when it is true of (1-p)%.

This protocol makes it possible to make a decision, but at
the same time it carries risks of making a mistake. We can
reject the hypothesis when it is true or we can accept the
hypothesis when it is false.

6 The contrapositive of an implication : if P=Q then Q=P .
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Accept Hy Reject Hy

Wrong decision

H, is true Right decision | (error of the first
kind o)

Wrong decision
H, is false (error of the Right decision
second kind f3)

The aim is to minimize the risks linked to a and . If we
accept Ho, then a (the probability of rejecting the null hy-
pothesis when it is true) has to be important, and [ (the
probability of accepting the null hypothesis when it is false)
has to be low. If, on the contrary, we reject Hyit is because
a is low and  important.

When Hp is true we are able to compute the risk, and a is
equal to 1-p. However if Hp is false we cannot compute f3,
unless an alternative hypothesis H; is known.

For a standard test we fix 1-p in advance. For example we
can consider the test statistically significant at the threshold
of 5%, and, according to the result found reject or accept
the hypothesis. Another method 1is to calculate the
probabilities a and  which correspond to the value X
found with our sample. Then we measure the credibility of
Ho and we choose whether or not to accept our hypothesis.

For example, let's imagine that we have several dice. All
the dice are unbiased except one which has double the
chances of falling on six. Unfortunately the rigged die is
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mixed with the others and it does not bear any distinctive
marks. We choose one die for a game night and we want to
distinguish the biased die to be sure that the chosen die is
well balanced.

The die is thrown 92 times :

3151353256243365313441354244652632465436616546
2241154636433165514444241456414316555146362534

For Hy we define a discrete random variable X. When the
outcome is six the value is 1. All other outcomes are
recorded as O :

P(X=0)=5/6 and P(X=1)=1/6.

Xj Xo=0 X1=1

pi Po=5/6 | pi=1/6

W=Dy Xyt P Xy

2

02:p0<X0_M)2+p1<X1_M)

oM 1

The mean of X is u=1/6~0.167 and the standard devia-
tion is 0=v5/6=0.373..

In our sample there are sixteen sixes and the sample mean
is Xx=16/92~0.174 . Therefore x—u=t,.0/Vn which
gives:

t,=(x—u)vn/c=~0.187 .

The right tail of the Gauss distribution for values greater
than 0.187 has an area of 0.43, showing that 0=~43% 7.

7 Here ¢ is known and n=92 is large enough to use the central limit
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Hp

accepted : Sampling
a large distributions
B small

v

X

If Hy is false then H; is true. If the alternative hypothesis H;
was "the die is biased" (with no details about the way the
die is loaded) we would have conducted a two-tailed test
and for o we would have to consider the two tails of the
distribution. This scenario only requires a one-tailed test: if
Ho, were false, the probability of observing six would be
doubled and we would observe greater values.

For H, we define the random variable Y with P(Y=0)=2/3
and P(Y=1)=1/3. The mean is w'=1/3=~0.333 and the
standard deviation is 0'=+v2/3=~0.471 .

Then X—u'=t,".c'/Vn and t,'=(u'—X)Vn/c'=~3.24 .
The left tail of this distribution has an area of 3~0.06% .

We can therefore very comfortably accept the hypothesis
that the chosen die is balanced. In the case of rejection we
would have a 43% chance of making a mistake (we try to
minimize this error first, classically it is only below the
threshold of 5% that one begins to question the null hy-
pothesis). With regard to the alternative hypothesis, there is

theorem.
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less than a 1 out of 1000 chance that we considered the die
balanced while the die is rigged (we also talk about the
power of the test : n=1-f).

Note that we never calculate the probability that a
hypothesis is true but the probability to reject the
hypothesis while it is true (error of the first kind).

In the legal framework an error of the first kind is made if
an innocent person is convicted and second kind if a guilty
person is acquitted. The jury is asked to prove the guilt
beyond a reasonable doubt and if the person is convicted o
must be sufficiently small [vi]. We try to minimize the
probability to condemn an innocent person. We do not
directly consider the probability of being guilty, the person
on trial is presumed innocent, a defendant is considered not
guilty as long as his or her guilt is not proven (Ho : "the
defendant is not guilty").

Exercises page 39 treat different cases for this test.
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H. Chi-squared test

The Chi-squared test is an another hypothesis test that is
simple to use. It tests a null hypothesis stating that the fre-
quency distribution of events in a sample is consistent with
a theoretical distribution. We consider different disjoint
events that have a total probability of 1.

number of observa- o)

numb ol . [of.[0o]
expected E, ‘ E, ‘ ‘ E, ‘ \ E,
frequency :

We compute the following sum :

2 - (Oj_Ej)z

Next we have a table on page 240 to estimate the probabil-
ity of rejecting the null hypothesis Hyo when it is true. Ac-

cording to the value of Xz and the number of degrees of

freedom we determine whether the assumption is accept-
able. The number of degrees of freedom is :

ddl=c—1 (number of categories minus one)

Let us illustrate with the experiments carried out by the
botanist Mendel. He makes crosses between plants. He
crosses peas with pink flowers. His theory implies that he
must obtain 25% of peas with red flowers, 25% of peas
with white flowers and 50% of peas with pink flowers. This
result is derived from the random encounter of gametes.
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Imagine that he observes one thousand flowers with the fol-
lowing values: 27% white, 24% red and 49% roses. Should
he continue to believe in his hypothesis?

Observed numbers : 270 | 240 | 490 |
Theoretical frequencies : 250 | 250 | 500 |
then
2 2 2
X2:(270—250) ,(240-250)" (490-500) 2
250 250 500

and ddl=3—1=2

According to the table, there is more than a 30% chance
that the assumption will be rejected when it is true.

We then decide to accept the hypothesis. In general, we
take a critical probability a of 5%, below which it is
envisaged to reject the hypothesis.
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The test is easily generalized for a table :

Experimental frequencies : Theoretical frequencies :
Oll 012 Olj OlC 11 12 Elj Elc
Oy Oy i e E, E,

Oy v O e .. E, . . E;

O.f i i i . O, E, E,

The ddl is dependent on the number of columns ¢ and of
TOWS 7 :

ddl=(c—1)(r—1)

We compute the X2 with a similar formula :

2
XZZZ <OijE_Eij>

(i) ij

Moreover, we use the same table to determine the validity
of the hypothesis.
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L. The sources of the uncertainties

A random variable has a small uncertainty if the
measurement is precise, accurate and the acquisition
system has a good resolution.

Accuracy is ensured by the absence of systematic errors.
There could be a bias that makes the measurement inaccu-
rate (even if the dispersion is low). Reading errors, absence
of systematic control and corrections of influential factors,
hypotheses in the modeling, etc. All biases must be identi-
fied and estimated in order to be added to the dispersion, so
the system becomes accurate.

Precision pertains to the repeatability and reproducibility
of the measurements. The values of a precise system have
low variability. The dispersion may be caused by accidental
errors or by a random physical phenomenon (such as ra-
dioactivity). The experimenters by their own work, consci-
entious and according to a well defined and rational proto-
col, can minimize dispersion. The sources can be countless,
but we will try to identify a maximum of sources in order
to evaluate them.

The resolution of a sensor depends on the distance between
the graduation marks, the type of vernier or the number of
digits on the display screen. Sometimes other factors have
to be added to the uncertainty due to discretization. You
have to refer to the technical datasheet, the instruction
guide or contact the manufacturer for a good knowledge of
your measuring tool. Calibration of measuring instruments
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can also be performed with a high-precision apparatus that
is used as a reference.

The influence of these different sources of uncertainty can
be illustrated by a target and arrows. The center of the tar-
get corresponds to the quantity to be measured and the ar-
rows represent the different measurements. If the arrows as
a whole are not correctly centered, the accuracy is not as-
sured. The tightening of arrows represents precision. The
distance between the circles on the target indicates the res-
olution. The value noted is that of the circle whose arrow is
closest. The experimenter sees the arrows and the circles,
however he does not know where is the center of the target.
He holds the bow and his desire to be closer to the center
of the target shows the quality and rigor of his work.

Measure accurate, precise and with a good resolution :
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Measure accurate, with a poor precision and a low resolution :

Measure precise but with a bias and a low resolution :
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Measure biased, with low precision and resolution :

The full standard deviation will be determined from the de-
viations of each source by adding the squares (due to the
propagation of uncertainties explained in Chapter 2):

o= \/012+022+ 032+...
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J. Exercises

Exercise 1 : Ages Answers p171

Students of a class have the following ages : {18; 20;
18; 19; 18; 18; 18; 17; 18; 19; 17; 19; 17; 21; 18}. De-
termine the mode, median, arithmetic mean, geomet-
ric mean, range, standard deviation, root mean
square deviation, and mean deviation?®.

Exercise 2 : Card game Answers p171

We play with a 32-card standard deck. We randomly
draw five cards.

a) Determine the probability of a four aces hand.

b) Determine the probability of having a flush (a flush
is a poker hand containing five cards all of the same
suit - hearts, spades, diamonds or clubs).

Exercise 3 : Gravity field Answers p171

Students measure the Earth's gravitational field
strength g. The students measure the following
values at the laboratory : 6,20 ; 8,35 ; 13,00 ; 8,37 ;
8,54 ;9,67 ;9,75; 10,66 (m/s?).
a) What comments can be made about these results?
b) Calculate the mean and standard deviation.
c) What is the mean uncertainty (95% confidence)?
Is the result consistent with the expected value?
d) A ninth student performs a new measurement
under the same experimental conditions. Evaluate
the probability that the student will get a result
between 8 and 12 m/s?.

8  Absolute deviation mean= (z ‘xi - 5(‘ )/n = (z V[x,— )?jz)/ n
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Exercise 4 : Elevator Answers p172
The maximum load of an elevator is 300 kg, and the

total mass of the occupants is 280 = 10 kg at 0. What
is the probability of being overloaded?

Exercise 5 : Assignment Answers p172

The following table represents Students' assignment
grades (ranking on a 20 point scale) :

10 5| 13 7 6 9 5 5| 10| 15 5 3

15 12 | 11 1 3 13| 11| 10 2 7 2 8
2| 15 4| 11 | 11 5 8| 12| 10| 18 6

a) Calculate the mean and standard deviation.

b) Make a graph with the grades on the x-axis and
the frequencies on the y-axis.

c) Make another diagram with the following class

intervals : [0, 1, 2], [3, 4, 5] ..., [18, 19, 20].
Which bar chart do you prefer?

Exercise 6 : Yahtzee Answers p173

We play this game with five six-sided dice.

1) The five dice are drawn. What is the probability
of having Yahtzee (all five dice the same).

2) What is the probability of having a sum smaller
than ten?
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3) We do a series of throws and we get the following
sums: 18, 15, 17, 22, 16, 12, 14, 22, 23, 14, 23, 14,
18, 21, 12, 15, 18, 13, 15, 18, 17, 15, 17, 21, 25, 16,
8, 15, 15, 13.

a) Calculate the mean and standard deviation.
b) What mean do you estimate with 95%
confidence? Is it consistent with the theoretical
value?

c) Make a graph with the values and their
frequencies.

d) If we roll the dice again, what is the
probability of the result being higher than 247?

Exercise 7 : Elastic bands Answers p174

An elastic bands manufacturer indicates that among
a thousand elastics sold, on average, ten are not
functional. A buyer wants to test the delivered
batches before accepting the delivery. He decides to
refuse the delivery if the number of damaged elastic
bands is too high and wants to have a less than 1%
chance of making a mistake by refuting the manu-
facturer's indication. The buyer picks n elastics
randomly. How many damaged elastics should the
delivery contain for the client to refuse the delivery?
Indicate this number for three different cases: a
sample of 1000, 200 and 50 elastic bands.

Exercise 8 : Testing an insulating panel
Answers pl175

A manufacturer specifies a thermal conductivity of
0.039 W/m/K for a insulation board. The value is
certified within +5%. You want to check if this is
true. To do so, you take ten panels at random and
measure their respective conductivity (mW.m*.K?!) :
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139.1/38.8/39.5/39.2/38.9/39.1/39.2/41.1/38.6|39.3

Are the values in agreement with those announced by
the manufacturer (95% confidence on the given
margin is consider)? Could he, according to your
results, announce another margin?

Exercise 9 : Coins Answers pl175

We perform a large number of coin tosses to test if
the probabilities of landing heads or tails are equal.
We carry out the experiment with three different
coins. Are they balanced? (Answers with 95%
confidence)

1) 42 tails and 58 heads.

2) 510 tails and 490 heads.
3) 420 tails and 580 heads.

Exercise 10 : Parity Answers p176

Is gender equality respected in both chambers and The
Supreme Court?

Male Female
Parliament 470 107
Senate 272 76
The Supreme Court 10 2
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Exercise 11 : Births Answers p176

Let us test the following hypothesis : births in
Sweden are distributed uniformly throughout the
year. Suppose we have a random sample of 88 births.
The results are grouped according to seasons of
variable length : 27 births in the spring (April - June),
20 in the summer (July / August), 8 in the fall
(September / October) and 33 in the winter
(November - March).

At a 5% critical level, can the hypothesis be rejected?

Now, we collect a very large sample : 23385, 14978,
14106 and 35804.

What is the conclusion?
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Theory

Exercise 12 : Gaussian distributions in the plane
and the space Answers pl176

One-dimensional Gaussian distribution :

Let p(x) be the probability density function of the
standard normal distribution.

1- Calculate and compare the means of x and [x|.
Which is equivalent to the mean distance from the
origin? What do you think about o, and o04?

2- Do a numerical calculation of P(|x|<1), P(|x|<2)
and P (|x|<3).

Two-dimensional Gaussian distribution :

Let p(x,y) be a two-dimensional standard normal
density with p(x,y)=p(x)p(y). Where p(x) and
p(y) are one-dimensional standard normal densities.

Hints:

Let consider a multiple integral of a two-variable
continuous function. If we can separate the variables
and the limits of integration are independent of x and

y:
[ f(x,y)ydxdy=[] f(x)f(y)dxdy=] f(x)dx [ f(y)dy

Converting between polar and Cartesian coordinates :
p’=x’+y’ and dxdy=2mp dp (rotational symmetry)
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1- What is the expression of p(x,y) ? Show that
p(x,y) satisfies the two necessary conditions for a
probability distribution.

2- By introducing the polar coordinates verify that the
probability on all the plane is one. You will express
p(p) define as:

I p(x,y)dxdy=] p(p) do .

p(p) is the density function with respect to p.
p(p) dp corresponds to the probability of an event
being between p and p+dp.

What is the value of the mean p of the distance p from

the point of origin? What is the standard deviation o,
for this distribution?

3- Calculate P(p<o,), P(p<20,) and P(p<30,).

Three-dimensional Gaussian distribution :

Let p(x,y,z) be a three-dimensional standard normal
density with p(x,y,z)=p(x)p(y)p(z). Where p(x),
p(y) and p(z) are one-dimensional standard normal
densities.
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Hints:

Same properties for the multiple integral than in two
dimensions.

Converting between spherical and Cartesian
coordinates : r’=x’+y’+z* and dxdydz=4mr’dr
(spherical symmetry)

1- What is the expression of p(x,y,z) ? Determine

p(r) define as : _Uf p(x,y,z)dxdydz:f p(r)dr.
p(r) is the density function with respect to r.
p(r

)dr corresponds to the probability of an event
being between r and r+dr.

2- Verify that the probability on all the space is one.
3- What is the value of the mean r and the standard
deviation o, ?

4- Calculate P(R<o,), P(R<20,) and P(R<30,).

r

5- Compare the three cases.
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Gaussian 1D 2D 3D
Distance from 9
the origin IxI P r
[+ [ Y
|12 jus 2
Mean \} \J’ > 2\}11
Standard 1 V2 V3
deviations
P (o) 68.3% 1-1/e=63.2% 60.8%
P (20) 95.4% 98.2% 99.3%
P (30) 99.7% 99.988% 99.9994%

To check your calculations on a spreadsheet you can use the
following functions:

On OpenOffice :
« sum of a selected area * (ex.: B43:B53)
=SOMME(¥)

« value set to the cell B3 : $B$3

. =MOYENNE(¥*)

e squared value : *"2

e square root : *~(1/2)

e =ECARTYPE(*)

« Student's t-value 95% confidence and n=20 :
=LOI.STUDENT.INVERSE(0,05;19)

+ =TEST.KHIDEUX(*;**); * : experimental frequencies
(ex.: B71:E72), ** : theoretical frequencies.

9 MaATH : We may be surprised at the difference of the one-dimensional
expression with the absolute value, it is only a question of definitions in
cylindrical and spherical coordinates. For example, pe[0;+oco[ and 0€[0;2x[,
but we could also take pe]-co;+oo[ and 0€[0;xt[, then the mean of p would be
zero and we would have considered its absolute value.
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II. CORRELATION AND
INDEPENDENCE

In the previous chapter we looked at a singular ran-
dom variable X with » number of outcomes {x;}. Now we
have several random quantities and a new index to distin-
guish them : X; and its observations {x;}. X; is the j " quan-
tity and x; is the k™ observation of this quantity. We are in-
terested in the interactions between these different quanti-
ties.

To illustrate, we consider a sample of four individuals
with three characteristics, of height X,, weight X, and of
birth month X;. A priori, we expect a correlation between
height and weight : generally taller people also have heavier
body mass (positive correlation). On the other hand, we can
think that birth months have no effect on weight and height
(X; uncorrelated with X; and X>).

A. Correlation coefficient

The sample correlation coeflicient r is used to identify a
linear relationship between two variables X; and X; :

R o X G,
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r varies between -/ and +1. If [r|=1 the variables are
perfectly correlated : r=1 is verified in the case of a
perfect increasing linear relationship, and r=—1 in the
case of a perfect decreasing linear correlation. If r=0,
the variables are uncorrelated and independents.

Calculus of r;z ,r;3 and 723 :

X | X | Xs| X=X | X=X, X=X (x-x)
(cm) | (kg)
1 160 64 | 4| -15 -11 -2 225
2 |170] 66 | 8 -5 -9 2 25
3118084 |9 S5 9 3 25
4 1190 86 | 3 15 11 -3 225
X|175175 |6 2= 500
and :
(x,—%) | (%) (x—%) (x,— %) (%~ X;)
(x,— %) (x3—x5) (x3—x5)
121 4 165 30 22
81 4 45 -10 -18
81 9 45 15 27
121 9 165 -45 -33
404 26 420 -10 -2
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420
- r,=—=0.93 r.,~—0.09
then: T2 /500404 , T3 and
ry,~—0.02

ri2 is close to +1, so we have a strong positive correlation.
ri3 and r»; are close to zero and therefore: X; is independent
of X;and X5 :

90 10 10
[ | [ |
80 8 | s
6 6
o o
X 70 R, - = R .. =
60 2 2
150 170 190 150 170 190 60 70 80 90
X1 X1 X3
Examples of data sets :
Example 1 :r=1 Example 2:1=0.8
2 | 28 -
1 ] {1 u g 5@
S g, %"
o sl
2 1.0 1 2 B0 15
81 Om 5,
s -2 s 0
X1 X1
Example 3 :r=0 Example 4 :r=-0.8
2 ] 28
]
] ] = 8
2 g s
- 808 & st s
2 1.0 1 2 0 8) Sgae
218 ® el
=2 [ ] 0
X1 X1
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Example 5 : r=-1 Example 6 :r=1

] 2 32
81 24
R 0= = susEaceuaEenenes
2 -1 _0 1 2
-1 e 8
" ! 1.5 9 1
X1 X1
Example 7 :1=0.92 Example 8 : r=1
a ]
| ]
= s > ]
0 5 10m 15 . [ )
.. 0 - 4000
..l
oopoo® '...
T X=T3
Example 9 : r=0 Example 10 :r=0.94
9 00000
[ ] ] smm 3
] L] L]
N8 6 L & L 6
0 "5 16T 15 . 4
i Omr 5 10 515
[ ] ]
X1 X1 0

Examples 7, 9 and 10 illustrate a strong correlation
between two variables. Yet the correlation coefficient is not
as close to -1 or +1 as we could imagine, it is even zero in
example 9. This is due to the fact that the correlations are
not linear.

There may be saturation phenomena (example 10) or
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threshold effect (a product may be beneficial at low dose
and harmful at higher doses - example 9). To prevent these
phenomena from misrepresenting the data, it is important
to carefully consider the relevance of the variables chosen
before starting a statistical study.

Another example: if we study the volume V of different
objects according to their size 7, we find a positive
correlation. But the correlation will be much stronger
between V and X = T (graphs 7 and 8).

The fact that two variables are correlated does not
necessarily imply a causal relationship between the two
variables (the variation of one variable leads to the
variation of the other). Rather than the variables effecting
each other, the change may be attributable to a common
external cause.

For example, it can be assumed that there is a correlation
between the consumption of sunscreen and of ice cream.
There is obviously no causal link between the two but a
common cause i.e. the weather.

A physics study can show a causality, not a statistical one.
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B. Propagation of uncertainties formula

Consider a bucket filled with a million grains of sand.
The mass of a grain is 10 mg with an uncertainty of 1mg.
What is the mass of sand contained in the bucket?

1) Propagation of standard deviations formula

As a general approach, let f be a function of p independent
variables:

f(X05Xy50s X5, X))

Each of these random variables is associated a mean value

X; and a standard deviation o IE

What are the values of f and o, ?

Statistics give the answer and demonstrates the propagation
formula of the standard deviations:

p

o;=2

j=1

of >,
(G—XJ) oF

10 We obtained the variance formula by replacing o> by V.
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2) Uncertainty calculations

For the uncertainties (defined on page 13) we also have a

propagation formula:

Zp:
j=1

The uncertainty propagation formula is not as exact as for
standard deviations, but this formula is very practical and
often very close to the exact result.

Considering our bucket: M(m,m,,..,m,,..,m,)
p
with M=) m,

where we call M the total mass of sand in the bucket, m;
the mass of each grain and p the number of grains.

J

p
Zi@M/am Am/’

OM/om;=0m/0m+..+0m;/0m;+..+0m [Om,
OM/om;=0+...+1+...+0=1

(Calculations of partial derivatives are explained on page 167)
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and AM’=p-Am* with Am=Am; whatever j.

Finally: A M=+p-Am=+v1000000x0.001g .

The bucket weighs 10 kilograms with an accuracy to the
gram. The precision on the mass of the bucket is thus
0.01%. Naively, we might have thought that the overall
uncertainty on the bucket mass was the sum of the
uncertainties of each grain. We would then have an
absolute uncertainty of 1 kilogram and a relative of 10%,
which is very different from reality and would ignore the

compensations.

Here the propagation formula is very precise because we

have a very large number of grains. It is even exact, from

the small numbers, if the distribution of the mass of the

grains is Gaussian'',

11 math : A linear combination of Gaussian quantities is itself
Gaussian (applies here to a sum). And in the propagation of
uncertainties formula, if f and the x; have the same kind of

probability distribution, the formula is exact like this one with the
standard deviations.
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In practice, there are multiple common ways to calculate
uncertainties' propagation, depending on the situation,

given below:

e For sums or differences we add absolute

uncertainties squared:
2 N 2
Af'= Z A X,

For example if d=x;-x; with Ax;=Ax;=1cm then
Ad=1.4cm .

* For products or quotients we add relative

uncertainties squared:

5

2
ij
X;

For example if R=U/I with U and [ with a precision of

1% then R is known with a precision of 1.4%.

In more complex cases, the partial derivative calculation

must be performed explicitly.

Alternatively, using a random number generator or
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uncorrelated packets approximately Gaussian, it is possible
to do a numerical calculation.

The latter method is illustrated in Exercise 2 of this
chapter. A spreadsheet can do the calculations auto-
matically (for example see on sheet 4 of the file

IncertitudesLibres on www.incertitudes.fr).

There are also methods which give general ideas on
uncertainty. They develop a general impression at the risk

of reliability.

For example as we add the uncertainties squared, we can
anticipate that the largest uncertainty will quickly prevail
over the others. Consider the example of R=U/, if U is
known with an uncertainty of 1% and 7 of 0,1% then R is
known with an uncertainty of 1,005%=1%, we can ignore

the uncertainty of I.

For addition and subtraction, it is sometimes considered
that the parameter with the last significant figure the less
precise indicates the precision of the last significant figure
of the result.

Yet on our example calculation of the mass of the sand-
filled bucket, it does not work. Since the mass of a grain is

m = 10 mg but the mass of the bucket M is known to the
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gram and not to the milligram!

For multiplication and division, it is sometimes considered
that the parameter with the lowest number of significant
figures indicates the result's number of significant digits,
but here too one must be careful.

As a simple illustration, if H=2h with h=5,00m (h known
within a ¢m), what is the value of H ? According to the rule
below, H would be known with three significant digits:
H=10,0m. H would only be known to /0cm, it goes without

saying that it is closer the cm ...

While these tricks serve to aid the calculations, they are not

without their pitfalls and must used with caution.
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C. Linear regression

We have two correlated random variables, X and Y,
and are in need of an approach for modeling the relation-
ship between them. The outcomes generate a cloud of data
in the plane y(x) and we want to determine the best affine
function y=ax+b that fit the observations. For example,
what is the most appropriate relationship between the
height X and the weight Y in our initial example?

What are the uncertainties Aa and Ab ?

1) Principle and formulas

y/\ \
M, a

] varies
d;

/] -

b :[ i d- =Y%-Y=€
varies P&
X; >

We choose the least squares method: this method mini-
mizes the sum of squared residuals.

The set of dots is denoted M (x,,y,) . For x; given, the es-
timated value of yis: y,=ax,+b.
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We have to minimize the following quantity:

Z dz:z (Yi_j’i>2

i

We differentiate this quantity with respect to a and b, and
we set the derivatives equal to 0. We then have the best
straight line and can obtain the following equations:

z (y,—ax,—b)x,=0 and Z (y;—ax,—b)=0.

i

This is equivalent to

Q
Il

and b=y—ax

3
>.l<
| |
I |

<

We call ¢, the residuals: Y,=Y;+e; .

we find the following different standard deviations '*:

2
z €;
« for the residuals $r=\ n_>o

* fortheslope s ,=

» for the y-intercept Z 52
§,=5 4| ==

12 Demonstrations p99.
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t,-2 : Student's t-value for n-2 degrees of freedom.

You are now able to carry out all calculations.
Let's do the calculations for weight in relation to height:

X y=(160x64+170x66+180x84 +190x86)/4
x*=(160"+170°+ 180°+190%)/4

a=(13230—-175x75)/(30750—175°)=0.84 and
b=75-0.84 x175=-72

s,=V[(64—(0.84x160—72) *+(—4.8*+4.8%+(—1.6 *]/2~5.06

5,~5.06/v(160—175)*+(—5 *+5°+157~0.226
Aa=2.92x0.226=0.66 with a 90% confidence

$,~5.064 (160?+170°+180°+190°)/[ 4(15%+ 5°+25+225)]~39.7
Ab=292x39.7=116 with a 90% confidence

then: Height=(0.84+0.66)Weight—(72+116)

with a 90% confidence.

Here, the formula is very imprecise, which is unsurprising
given the small number of points and the dispersion of the
data. However, the method of calculation is now explicit
and comprehensible.

In the graph that follows we have:

e In the middle, the interpolated straight line repre-

sents the best balance between the points above and
below this line.
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Height X

* The dotted lines represent the two extreme lines (
y:aminx+bmax and y:amaxX'l'bmm )

* The first curves represent the estimated values for y.
It is the mean confidence interval of y, correspond-
ing to x, :

o

—\2
Ay: nZSr\/l+ (XO X)

For example if x,=175 c¢m we can -calculate
Yo=75.0%£7.4 kg. Also we can obtain an estimation
out of the interval, for example if x,=/95 cm we
obtain y,=92+15 kg.
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The outer curves represent a prediction for a new
measurement. Prediction interval for an observation

Yo

Ay =t L (x=X)" +1
= Su—FF—=—"—"—"
Yo—Ll,0S, n Z(Xi_)_()z

For example, if the height equals 175 cm there is a
90% chance of their mass being between 58 and 92
kg (generally 90% of the data are inside the curves

and 10% outside).

2) Absolute zero measurement

We study a gas en-
closed in a rigid container
of constant volume. We
have sensors to measure
its temperature and pres-
sure. Initially the gas is at
ambient temperature and
pressure. Then we im-
merse the whole container
in hot water and measure
the changes over time' :

1 This experiment was realized on Tuesday 17 October 2006
in Bourges by M. ROUAUD and O. LEROQOY at the Lycée Alain-

Fournier (France).
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time 10h |[10h |10h |10h |not not 12h
15 30 40 55 noted | noted

temperature | 19.8| 52.9| 47.8| 42.4| 36.2| 33.5| 30.2
6 (°C)

pressure 1013] 1130| 1112] 1093| 1072| 1061| 1049
P (hPa)

We assume that the gas obeys the ideal gas law
PV=nRT=nR(6-06,,) . Plotting O(P) we can obtain

a temperature of absolute zero : the y-intercept give Ok.

525

]
Enlargement

47.5

425

Temperature °C

5
1010 1030 1050 1070 1090 1110 1130
Pressure hPa

The regression is good (r=0.99991) but the measured
points are far from absolute zero. By extension we obtain
with a 95% confidence:

O,k =—266.0+4.8°C
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We know that absolute zero is -273.15 °C, therefore this is
not consistent. We can therefore assume that there is a bias
and that we have not considered all the sources of
uncertainties.

3) Regression with uncertainties on the data

The measuring instruments are not perfect and the
manuals indicate the precision for each. The uncertainties
are 1% for the pressure sensor and 1°C for the
thermometer. We thus have an uncertainty on x and y :

M, (x;£Ax;, y,xAy))

Now both the dependent and independent variables
have uncertainties which contribute to the weighting
factors. Let w; be the weights. In an experimental situation
the weights are frequently not equal. The linear least-
squared fit requires the minimization of :

1
(A yi)2+(aA Xi)2

2 .
Z w;e; with w,=
i

The problem is solved iteratively because the weights
depend on the slope. We initially put an estimated value of
a, then the value of a obtained replaces it until the equality
of the values.

65



1140

1120

1100

1080

1060

1040

1020

1000

O,=—266%+35°C with the same con-

fidence on the uncertainties of x;

We obtain:

and y. The value is now

correct. The main sources of uncertainties seem to be

included.

We could also consider the modeling uncertainty induced
by the ideal gas hypothesis, but under the experimental

conditions of this experiment, the model provides a good

approximation. This source of uncertainty is negligible

compared to the others uncertainties considered here. The
use of a real gas model (like Van der Waals equation of

state) would demonstrate this.
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Formulas [i] :

S*°=> w[y,—~(ax,+b)]

leads to

_ Zwiyi ZWI-XI-Z B Zwixi zwixiyi
- A

b

and

_ Zwi sz‘xi)’i - Zwixi Zwi)’i
- A

a

with
A = Zwi Z:wixi2 — (ZWin)Z
then
Z Wi Xl
Ab = A
and
sa = (2
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4) Linearization

In many cases we can go back to a linear model (i.e.

y=ax+b). Here are some examples below:

y=axx y':axv‘i‘b with
y'=ln(y) x'=In(x) and
X,y,6>0 B=a (x:eb and
AB=Aa Ax=xAb
y=ae’*  x,x>0 y'=In(y) x'=x
__ 1 1
Y= o+ B x Y Ty
ot Bx (logistic . y "
y=7e wipx distri- Y _ln(l—y) y'=atpx
I+e bution)
o P (Pareto y'=In(1—y) x'=In(x)
y=1- ( — | distri- _b
bution) B=—a x=¢e ¢
B 1
_[x "=In|{ln
y=1—e Y (1_ )
(Weibull distribution) x'=ln(x) B=a «= efg
y=x+e* no linear model
o X
y= B+ x no linear model

y=o+p x+yx’

no linear model as y(x)
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5) Comparison of methods

In all the regression methods we consider, we are interested
in the variability of y to x fixed (the opposite approach
would yield equivalent results).

For a given x; we have a y; and its standard deviation oy.

a) Summary

1- Simple linear regression

45
40
35
30
25

20

0 1 2 3 4 5 6 7 8
yi=83 yi=17.3 yi=183 yi=27.3 yi=28.3 yi=37.3 y;=383
Casel: a=5 b=5 s5=2.34 s5,=0.443 and s5,=1.98

Simple regression does not mean that the data has no un-
certainties. The uncertainties are unknown and we estimate
them with the data itself. The uncertainties are considered
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constant whatever regardless of y. The uncertainty corre-
sponds to the standard deviation of y; with respect to the es-
timated line :

2- Regression with constant standard deviation s,:

45
40
35
30
25

20

0 1 2 3 4 5 6 7 8

Case2: a=5 b=5 5=255 5,=0482 s,=2.16

In this case the s, are equal and known : s =s,  and
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If the straight line does not pass through the error bars, it
can be assumed that all sources of uncertainty have not
been calculated. It is necessary either to integrate them into
sy, or to apply the previous method.

3- Regression with standard deviation s,:

45
40
35
30
25

20

0
0 1 2 3 4 5 6 7 8

sy=4  §.=3.5 sp=3 su=25 sp=2 sp=15 sy=1
Case 3 : a=4.67 b=6.51 5,=0.482 s5=2.16

The s, are known. We can apply the propagation formula
of the standard deviations:

2 8[3 2
Sazzz Sy[2 and SbZZZ(—) Sy,2

da

T\ 0y; —\ 0y

The formulas' results are exact and help us to find the ex-
pressions of the previous cases. Also in this case we can

71



use the following estimates:

45

40

35

30

25

20

sy=4  $p=3.5 sp=3 $u=2.5 sp=2 sp=15 s5,=1

$u=0.1 $,=0.2 5:=0.3 s54=0.4 s5:s=0.5 s5x=0.6 s5=0.7

5=4.0 $=3.6 ;=34 s=32 s=32 s=34 s5=3.6
Case4: a=4.98 b=5.14 5,=0.695 s5=3.16

But if x; is assumed fixed, we transfer the dispersion
2 2__ 2 2 2
on y;: Sy,.Total =S _sy,» +a SX,

Everything happens as if only y; had standard deviations s..
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Hence the formulas :
2_
5=
1

The derivatives are difficult to calculate (the weights de-
pend on a), but we can easily evaluate them numerically.
Also we commonly use the following estimates:

oal’
0y

2
s’ and stZZ(@) s,

oy

b) Discussion

45

40

35

30

25

20

Case5: a=5 b=5 5,=0.696 s,=3.16

Uncertainties in this case can come from measuring instru-
ments. The dispersion of the first case on page 69 can come
from accidental errors linked to the experiment or from a
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fundamentally random phenomenon.

We would like that the fourth case on page 72 includes all
the sources of uncertainty of the cases 1 and 5 :

sa|:0,443 and 50520.696 but SaA20.695

Using the conventional formulas, we get the impression that
the dispersion around the regression line is not included. In
order to get the correct dispersion around the regression
line, we perform the direct calculation with the propagation
formula and I propose the small variations method:

5, =2,

i

Aa

0

i

Where y;.; are kept constant: Y, +A y,—~a+Aa

Ay; is a small variation with respect of y; , if Ay; becomes

smaller, AA—G stays constant (definition of the derivative).

i

We try to find the result for s,5: we replace y,=/0 with
y;=10.001 and then from a=5 we have after iteration

1=4.999907 then AA" ~—0.093.

Y1

We return y;= /0 and repeat the procedure for y, by re-
placing it with 75.001. We obtain the following results:
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J=1

J=2

Jj=3

j=4

J=3

J=6

J=7

=, |-0.093
oy,

-0.078

-0.049

-0.006

0.041

0.080

0.105

We find s,=0.696, the same result than the previous

method.

Let's do the same for s,

j=1

j=2

j=3

j=4

J=5

j=6

J=7

= |-0.096
0 Y

-0.080

-0.050

-0.007

0.081

0.122

0.147

We then find that s, =0.786. The result is significantly

different from the classical estimate and now seems to in-
corporate all the sources of uncertainty.

In the exercise Standard deviation proportional to y on page
100 we study a particular case where we carry out the di-
rect analytical calculation. The comparison can thus be ex-

tended.
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D. Nonlinear regression

We generalize the weighted least squares method in the
nonlinear case. The function is nonlinear with respect to x
and also nonlinear with respect to the parameters. Although
multiple regression has similar developments, it is not dealt
with in this book [X].

1) Principle

A

We compare Y; to the value [ (x;) given by the function

sought: yi—f(x;) . The weight assigned to (yi—f(x))
is inversely proportional to the variance of y;—f (x;) .

The quantities x; and y; are independent" from where:

13 Talking about independence between two variables as we look for a
functional relationship between them may seem illogical. We refer
here to the experimental determination of each quantity which is
independent (in the sense of uncorrelated uncertainties).
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V(y,i—f(x))=V(y)+V(f(x))

By applying the variance propagation formula again:

VIf(x)=F"(x)V(x)
into 5222 wi(yi— f(x))

1 14

with W= —
O-y, +f (Xi) O—x,

08’
ay

Then =0 allows to determine the parameters a; of our

function (by an analytical computation or a numerical
resolution).

Each time we can return to a system of linear equations of
the form HA=B, with H a square matrix and A the vector
associated with the parameters. Then A=H"'B, where H” is
the inverse matrix of H.

The parameters uncertainties are given by the diagonal
terms of the matrix H” :

o,’=(H "), 0, where o, is the residual variance with

a

respect to the estimated curve.

When there are no uncertainties on the data, the standard
deviation of the residuals with p parameters are written:

14 §° is also called x°. If we assume the distributions Gaussian, the
standard deviations can be replaced by the uncertainties using
Student's t-values.
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Z (yi—f (Xi))z
n—p

When w; depends on the parameters we iterate the method
until we can consider the weights to be constant. If we
know the standard deviations of the data, the standard
deviations of the parameters can be computed with the
propagation formula, or they can be estimated using the
same procedure used for linear regression with error bars
on page 67.

s =

r

2) Polynomial regression

In that case:
m
f(x)=a,+a,x+a,x’+..+a,x"=> a,x
i=0

This function is non-linear with respect to x and linear with
respect to the parameters.

Let us illustrate with the example of Cauchy's equation.
This equation explains the phenomenon of light dispersion.
It is an empirical relationship between the refractive index
and wavelength:

n(?\):a0+?\—+—

with the following data:

AMum) 0.6157 0.5892 0.5685 0.5152 0.4981
n 1.71276 | 1.71578 | 1.71852 | 1.72716 | 1.73060
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The uncertainties on A and # are initially neglected. What
are the values and the uncertainties of ao, a; and a,?

We have the following parabolic regression:

f(x):ao"'alx"'azxz with  f=n, x=1/A\%.

SZZZ(Yi_ao_alxi—GQX?)Z and 0S°/0a,=0

1 X y

H=| % x| » A=|a,| and B=|[xy|.
2 4 2
X X

>
<

With a spreadsheet we can easily do the calculations:

1 33 11 4150 —2530 376
H=[33 11 38| ., H'=[-2530 1546 —230| ,
11 38 135 376  —230 343
1.7 1.68129
B=~|57| then A=H 'B=[0.01135].

19 0.00022

For the uncertainties:

Nae=V(H Dntrss, with 5=y 2= (%))

n—3
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5,=1.87x10” and with 95% confidence #,.3=4.30
then
ap=1.6813+0.0017 , a;=(1.13+0.10)x107 um’
and a,=(2.2+1.5)x10" um’

Now, if we take the uncertainty An=0.00004 with 95%
confidence, we have an uncertainty on y but not on x.
Therefore the weights are constant: w,=w=1/An’. We
obtain the same system of equations and we have the same
results for H, H' B and A.

Here, in a similar way to the linear regression with error
bars, we can estimate the dispersion of the residues by

14w, :
-1
Aa,=\ M then
Z w;

ap=1.6813+0.0012, a;=(1.14+0.07)x107 um’
and a>=(2.2+1.0)x10” um’

With all the uncertainties, An=0.00004, AA=0.005um and
Ax=2AM\/A°, the weights depend on the observations. We
nevertheless arrive at the same system of equations by
considering the weights on an iteration constant, and we
compute H, H', B, and A with estimated parameters.

To calculate the means, we use the expression of the
following weight:

1
An*+(a,+2a,x, )’ Ax;
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We thus obtain a first expression of the parameters. To
iterate, we replace the previously used estimated
parameters with these new parameters. We iterate as much
as necessary to obtain a consistent value. Convergence is
often very rapid:

Iteration ao a a

Estimated | 1.5 0.005 0.0001
1 1.681282848208 |0.011350379724 |0.000219632215

2 1.681269875466 |0.011358254795 |0.000218466771

H*]
Also here we consider: A a, =1 (Z i then
Wi

ap=1.6813+0.0013 , a;=(1.14+0.08)x107 um’
and a,=(2.2+1.2)x10” um’

3) Nonlinear regression

We will start from p parameters a; estimated and use an
iteration method. On each iteration, the weights will be
considered constant and the function will be linearized for
each of n points on the set of parameters.

The function depends on the x; and the parameters ay.

Then we have f,=f(x;;ay) -
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0’ " Bf
S2=S w.(y—f)? 95 __ OF ()=
2 wily~f)" and 2a, 2;w.aak(y, fi)=0

i

The first estimated parameters are noted ao «. Following

parameters will be noted a; « for the jth iteration. We will

carry out a linearization with a small variation day  around
15

Aok .

Let d=(a,..,a,,..,a,) and <S_a:(6aly...,6ak,...,6ap) :

— P 0
f(x;ay+da,)=f +26001 f( d)
oaq, a,
or by reducing the notations :
=fo.t 0
=fo. Z 6(1, . Ao,
of (¢ 3|0 -
then ,Zwiaak()/i fo)i 2,:(6(11 Oyiéao,) 0

=y, ofaf
and Z Wlaak fO,i)_Z Wiaak aal 6 aOl .

il

=H

=k,

ofy|er
da, [\ 0a,

We set Hk,l:Z W,

0
Bk:Z Wiaj(.)/i_fo,i) and A;=04q, .
i k

from where again HA=B and A=H'B. We iterate until

15 wmatH : We generalize the notion of derivative by adding the
variations according to all the parameters:

f(xo+e):f(x0)+e(f'(x))xo
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variation on the parameters is negligible and the values
converge.

2_ -1 2
Here also, we use: 0, =(H ), 0,

Let us illustrate with a biological experiment, in which the
relation between the concentration of the substrate [S] and
the reaction rate in an enzymatic reaction is studied from
data reported in the following table [ix] :

i 1 2 3 4 5 6 7
[S] |0.038 [0.194 10.425 |0.626 |1.253 |2.500 [3.740
v 10.050 |0.127 |0.094 |0.2122 |0.2729 |0.2665 |0.3317

The model can be written as:

_ ax
B+ x

y where v=y and [S]=x.

We start with the estimations ay=0.9 and ,=0.2

of __x of ___ax H:H“ H,
ox PB+x > 0P (B+x) "’ H, H,| ’

Bl
B,|"

X

and B=
B

A=

In the absence of given uncertainties on x; and y; :

2
X.

1

Bo+X;

: , , - i y ’
i=1 of Gy i s i
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H12:H21:ZL13 and H —Z

i (BO+X1‘) Bo+x) )
X, o, X,
B,= i By=- o 2\WiT o
ZBO (yi=fo:) and Z(BO+Xi) (yi— fos)
. _ %X
Wlth fo,i—BO_{_ X,

We can now put everything into a spreadsheet, which
produces:
H,~381, H,=H,~—289,6 H,=370,

B,~—233 ¢t B,~1.86

and also

H_lN(o.649 0.508

N ~0.567
0.508 0.668

A=H 'B=~
) then ( 0.0602

From a;=a¢ +6ap and f,=fo+50 we have the new
estimated parameters:

a,~0.9-0.567~0.333 agnd P,~0.2+0.06~0.260

We repeat the calculation from the start, this time using
these values instead of ay and f to iterate. We calculate
new matrices and vectors H, H', B and A, and obtain
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and [3,.
The results are shown in the following table:

Iterat® a B Sa op S?

0.9 0.2 -0.57 0.060 1.4454965815

1 10333 |0.26 0.0101 0.166 0.0150720753

2 10343 1043 0.0150 0.103 0.0084583228

3 10358 |0.53 ]0.0040 0.024 0.0078643240

4 10.3614 |0.554 10.0004 |0.0024 ]0.0078441826

5 10.36180 0.5561 |0.00003 |0.00018 |0.0078440067

6 10.36183 |0.5563 |0.000002 |0.000013 | 0.0078440057

1 (1.52 6.34)

. : . H =~
After enough iterations: 634 36.2

Calculate the uncertainties on the parameters:

2 -
s,:\/s—2 . Aa=vV(H Dyt ,s,~V1.52.1.48.4 0'0(3_)784
n_

then Aa=0.07, ABp=0.35 .

Eventually: «=0.36+0.07 and p=0.56+0.35
with 80% confidence.
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The following graph shows the reaction rate as a function of substrate

concentration. The squares are the experimental points, the solid line is

the optimal curve and the dotted lines are the two extreme curves
foo s, and [o, s .

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05

To consider the uncertainties on the data we need to add
weights. These are considered constant on each iteration. It
will be necessary to calculate the derivative of f with
respect to x which is present in the expression of the
weight.

For standard deviations on the set of data we can calculate
the standard deviations on the parameters using methods
described on page 69 for the linear regression.
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E. Exercises

Exercise 1 : Correlations Answers p179

1- We carry out nine experiments to obtain in each case
three realizations of the quantities X;, X, and X;:

= 2 3] 4] 56 7] 8] 9
X0 [x=-1 12| 2] 0 0] 0 1 1 1
X, %=1 o | 1| 10| 1|10 1
X, [x=-1f o 1 110 1 110 1

a) Determine the arithmetic means and standard
deviations of these three quantities from these
samples.

b) Plot X, as a function of X;. The same for X3(X;) and
X3(Xa).

c) Calculate the correlation coefficients ri,, riz and ;.
What comments can be we made from the results?

2- Same for the following data:

XX ol 1| 1] 2 0|10 2|1
X, |12 | 1] 210 2]-1]-=2

3- Same for the following data:

X, -1 2 2 0 2 2 1
X, -1 0 2 -2 0 2 -1
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Exercise 2 : Volumes Answers p180

We fill four beakers with 100 mL of water each with a
pipette. To test the pipette and know the precise
quantity of water, we weigh to the nearest decigram
and obtain the following results for the different
beakers in mL.:

V,={100.1, 100.0, 99.9, 100.0}

1- Calculate the mean and the standard deviation of
V.. Estimate the precision of the pipette with a 95%
confidence.

We now fill two beakers and gather the contents of the
two into one:

V = V1 + Vz.
In the same order as V;, we obtain the following
measurements for Vy:

V,={100.0, 100.1, 100.0, 99.9}

For example, for the third measurement, V;=99.9 mL
and V,=100.0 mL.

2- Show that V; and V; are independent quantities.

3- Calculate the mean of V, its standard deviation and
its uncertainty AV with 95% confidence.

4- Could you find this result with the uncertainty
propagation formula?

(To improve the test it would take more measurements, but
the principle remains the same, and the results remain valid
because we have used the Student, considered decorrelated
data and globally Gaussian packages. We should also take
into account the uncertainties on the measures - resolution -
in addition to their dispersion.)
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Exercise 3 : Trees Answers pl181

We want to measure the distance d between two trees.
For this we have a stick of length one meter. From one
tree to the other, we place the stick end to end a
hundred times. For each displacement, we estimate an
uncertainty of 1 cm.

What is the uncertainty estimated on the value of d?

Exercise 4 : The two-position method
Answers pl182

We measure the focal length f' of a convex lens using
the two-position method (also called Bessel method or
displacement method).

An illuminated object is set up in front of a lens and a
focused image forms on a screen. The distance D
between the object and the screen is fixed. When
D>4f", there are two lens positions where the image is
sharp. The distance between these two positions is
denoted d. We then have the focal length of the lens by
the relation f'=(D?-d?)/4D. We measure D=2000%x10
mm and d=536+20 mm.

What is the uncertainty on f* ?

Exercise 5 : Refractive index Answers p184

We want to measure the index of refraction n, of a
window glass. We perform the experiment of the
refraction of a laser beam. According to Snell's law of
refraction n;.sin(i;)=n,.sin(i;), where n; are the indices
of the materials and i; the angles of incidence and
refraction. We get ni=n.,=1, 1=30%1° and i,=20%2°.

Determine n, with its uncertainty.
Exercise 6 : Cauchy's equation Answers pl185
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We want to measure the variation of the light
index n as a function of the wavelength A in a
transparent material (phenomenon of dispersion). To
carry out the experiment we need a prism, a sodium
lamp and a goniometer. According the theory, in the
visible spectrum, the index variation n(A) follows
Cauchy's equation:

n(\)=A+L

?\2

The sodium line spectrum is known. For each line of
wavelength 4;, the corresponding index n is calculated
using the formula of the prism:

sin

A+Dm,i)

D, is the minimal deviation angle. A=60° is the
internal angle of the prism. These two angles are
measured within 2' (1'=arc-minute and 1°=60").

We obtain the following values:

AMnm) | 6157 589.2 568.5 515.2 498.1
Color red yellow | green-yellow | green | blue-green
D, 57°49.5'| 58°9 58° 28 59°26.5' | 59°50
n 1.71276 | 1.71568 1.71852 1.72716 | 1.73060

1- Determine the uncertainty for n (An is assumed
constant).

2- Using Cauchy's equation find A, B and their
respective uncertainties.
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What is the value of the regression coefficient r?

3- We hypothesize that plotting n as a function of 1/A
or 1/A3, will produce a better alignment of the points.
We want to verify that the variation in 1/A? is indeed
the best of the polynomial relations. For this we take
the form:

n(\)=A+B.\"
Propose a method for determining A, B and «.
We can verify the model because we have a with its
uncertainty.

Exercise 7 : Wall Answers p187

There is a wall with area S=72 m? The outside
temperature is 6°C and the internal temperature is
maintained at 18°C. This wall is 50 cm thick and
consists of e,=40 cm of compressed straw (thermal
conductivity A,=45 mW/K/m) and e.=10 cm of coating
(Ae=200 mW/K/m). The values for A, thicknesses, and
the temperature are rounded to within 10%, the
nearest cm and the nearest half degree respectively.

1- Determine the thermal resistance with its
uncertainty of the straw for this wall (R.A.S=e)

2- Repeat for the coating.

3- Taking into account that thermal resistances
associate like electrical resistors in series, determine
the total thermal resistance of the wall with its
uncertainty.

4- What should be the minimum heating power of the

house to compensate for the losses by the walls?
(AT=R.®)
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Exercise 8 : Insulation and inertia Answers p188

In a low-energy house, the thermal resistances
e/A are measured per square meter. The thermal
resistances are 8 m2.K/W for the roof, 4 m2.K/W for
walls and floor, and 1 m2K/W for door and window
frames. The R-values are known to the nearest 10%.
The house area for the floor, the roof, the walls and the
frames are 36 m?, 54 m?, 82 m? and 8 m? respectively.

1- The equivalent resistances of the roof, the walls, the
floor and frames are in parallel. Determine the total
thermal resistance (in K/W) with its uncertainty.

Outdoor and indoor temperatures are constant.
2- What should be the minimum heating power of the

house to keep the indoor temperature constant while
offsetting the losses?

3- We switch off the heating and measure the
temperature over time to obtain the following results:

t in hours 0 1 21 4, 5 6 8 9| 10
T in °C 18] 16| 14| 12| 11} 10/ 9| 9| 8

Explain why the decay cannot be linear. We consider
an exponential decay: T(t)=a.exp(-t/1)+b . Calculate b,
a and T, with their uncertainties.

4- The house is insulated from the outside. The lost
heat flux corresponds to a decrease in the energy
stored in the house. This inertia is due to the thermal
capacity C of the materials (J/K).

a) By reasoning on an infinitesimal time interval dt,
find the differential equation verified by T(t) and the
expression of question 3.

b) What is the relationship between T, R and C?
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Determine C and its uncertainty.

In question 3 we could also take into account measurement
uncertainties: time can be considered as perfectly known
and temperature is measured using a thermometer with
graduations all the Celsius degrees.

For simplicity we considered that the outside temperature
remains constant (to account for day/night variations we
would consider sinusoidal variations and a harmonic
approach).

Exercise 9 : Yield Answers p191

Specific quantities of fertilizer are spread on
fields and we obtain the following yields:

Fertilizer 100| 200| 300, 400, 500| 600| 700
(kg/ha)

Yield 41 44 53 63 66 65 78
(Quintal/ha)

1- Determine the regression line that passes through
the scatterplot. Slope, intercept and uncertainties with
a confidence of 95%.

2- For 550 kg/ha of fertilizer, estimate the yield.

3- Repeat the calculation without fertilizer.

4- If a farmer spreads 250 kg/ha of fertilizer, what is

the probability that he will get 40 to 60 quintals of
grain?
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Exercise 10 : Study of a battery Answers p193

To determine the open-circuit voltage E and the
internal resistor r, we measure for the battery
different values of U and I with a voltmeter and an
ammeter (U=E-rlI):

range unit : V

forU: accuracy *+0.05% =0.003

U (V) 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
731|731 | 730 | 728 | 724 | 724 | 722 | 721 | 719 | 716

range unit : pA unit : mA

forl: accuracy accuracy *0.2% +0.0003

+0.2% +0.03
I 92. | 115. | 152. 0 0 0 0 0 0 0

83 | 45 | 65 |2352|4686 5200 | 5841|6661 | 7750 | 9264

1- Without error bars: determine ExXAE and r+Ar.

2- Repeat including the uncertainties on U and I
indicated in the instructions of the multimeter
manufacturer.

Exercise 11: Thin lens formula Answers p195

We want to measure the focal length f' of a
converging lens. At point O, the lens forms a sharp
image at A' of an object at A. We measure OA, OA' and
their uncertainties (are included all the sources of
uncertainty: geometry, focusing and modeling). We
consider that the lens verifies the thin lens formula:

1/0A' + 1/0A = 1/f".

Determine f' using a linear regression. Table on the
next page.
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Experimental Data (mm) :
OA AOA OA' AOA'
635 5 150 15
530 5 160 17
496 5 164 15
440 5 172 18
350 5 191 20
280 5 214 25
210 5 292 28
150 5 730 102
Theory

Exercise 12 :

For simple regression, show that:

> (x—x)=n(x'-%°)

i=1

Exercise 13 :
For simple regression, show that we can also write:

-

Exercise 14 :

For simple regression, show that: Ab=yx’Aa .
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Exercise 15 : Asymptotes Answers p198

For the simple regression, show that, above and below
the regression line, extreme line, confidence and
prediction curves, have the same asymptote when x,
becomes large.

Exercise 16 : Confidence Interval and Prediction
Interval for Linear Regression with error bars
Answers p198

Regression with error bars

1- Give the expressions of x and x* using the w;

weights. Could you find a new expression of A with x
and x? (p67) ?

Analogy

2- From the confidence and prediction intervals for
simple regression (p62 and following), use an analogy
to determine the following formulas:

Confidence: Prediction:

L (x,—%) 1 (x,—%)°
V1+ Ay = Vl—l—n—i— -,
w

1

AYo: [ -2 _2 o /

V”Z w; X =X Vn X=X
3- Determine the y-distances to the regression line for
extreme lines, confidence curves, and prediction
curves when x, becomes large.
In a previous exercise we showed that for the linear
regression, the asymptotes are the same. By analogy
what should we set so that it is the same in regression

with bars of errors?

i

Show that we then have the following formulas:
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Confidence: Prediction:

1 (x,—X)’ 1 (x,—X)’
Ay = (1420 Ay = 24 Xo
. 2w, X=X v VD, x*=%

The formulas obtained by analogy are thus empirical.
Yet, while they seem experimentally coherent, they
require confirmation by theoretical demonstration.

Confidence and prediction curves for the absolute zero
experiment: T (°C) as a function of P (hPa)

52

47

42

37

32

27

22

Exercise 17 : Other expressions Answers p200

For regression with error bars give the expression of

a, b, Aa and Ab as a function of x, y, xy, x* and ).
Compare with simple regression.
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Exercise 18 : Least squares method
Answers p201

Demonstrate by the least squares method the
expressions of a and b:

1- For simple linear regression.

2- For linear regression with error bars. The Ax; and
Ay; are considered small with respect to x; and y..

Proof of the expressions of Aa and Ab for the simple
regression:

Method 1 :
X,—X

Z (Xi_})Z .

2- Deduce from this formula of a its variance V(a) 'S.

1- Show that a:Z p;y; with p,=

Method 2 :
Use the propagation of standard deviation formula.

For simple linear regression, is it possible to find a, b,
Aa and Ab using the generalized regression matrix
method?

Exercise 19 : Expectation of a Answers p203

For linear regression, we denote a and B as the

parameters of the population: E(y)=a xi+ B.

a and b are the estimated parameters from a sample:
y;=ax;+b

Show that we have an unbiased estimator for a, so

E(a)=a.

16 wmatH : E(X+Y) = E(X) + E(Y). If X and Y are two independent
variables: V(X+Y) = V(X) + V(Y).
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Exercise 20 : Standard deviations
proportional toy Answers p203

We consider the particular theoretical case where the
standard deviations of the linear regression are

proportional to y : o,=ky;. This case, where the

relative uncertainties are constant, is experimentally
common. We are interested in the slope a.

rLrayayd
ylyx [yx
y y

y

1- Show that: ¢=

0
2- Express ﬁ (long calculation).
j

3- Calculate s, using the expressions found for the
following two datasets:

Xi 1 2 3 4 5 6 7
L: 10 15 20 25 30 35 40

2y | 8.286 | 17.286|18.286 | 27.286 | 28.286 | 37.286 | 38.286
(We let k=0.1).

Find these results again with the numerical method
(evaluation of the derivatives with the small variations
method).

Compare the values obtained by the classical method.

Exercise 21 : Interpretation of
the expression of w; Answers p205

Graphically justify the position of a in the expression
of Wi.
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Non-linear regression

Exercise 22 : Decomposition into Gaussians
Answers p206

A factory manufactures nails. With a caliper, we
measure the size of 48 nails:

Size  59.97 59.98 59.99_60.00 60.01 60.02 60.03 60.04 60.05
Quantity 2 4 6 5 5 10 9 6 1

Two machines manufacture the nails. The nails made
by one of the machines are not exactly the same size.
We assume that the size is distributed according to a
Gaussian distribution. Determine the parameters of
the Gaussian distributions of the nails manufactured
by each machine (maximum, mean and standard
deviation). How many nails have each machine
produced?

To check your correlation calculations you can use the
spreadsheet function of OOo :
COEFFICIENT.CORRELATION (¥;**),

Courbes : Insertion>Diagramme...>XY(Dispersion)>etc.

For matrix calculations, inversion of matrices
INVERSEMAT(*), product of matrices : PRODUITMAT(*;**).

You can use the file IncertitudesLibresOOo032.0ds on the

website www.incertitudes.fr to realize regressions. Sheet 2,
simple regression and sheet 3 with error bars.
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III. PROBABILITY DISTRIBUTIONS

We list different laws of discrete and continuous prob-
abilities. We verify they are distributions of probability and
we give their expectation u=FE(X) and variance

V=E[(X-u)].

The variance can also be calculated with the formula
V=E[X*]-E[X] and then we have the standard devia-

tion o=V .

We can calculate other moments that allow us to de-
termine, for example, the symmetry and the flatness of the
probability distribution.

Moments: w,=E(X")

Normalized moments are instructive because they charac-
terize the form of the distribution:

k

g
o

Wy
B,=E or Pro=—x
o

B, :Skewness (third standardized moment)

B, :Kurtosis

We also consider the sum of independent random
variables: Z=X+Y .
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A. Discrete Random Variables

1) Binomial distribution

We consider the number of successes in a sequence of
n identical and independent experiments. Each trial has two
outcomes named success and failure ( Bernoulli trial). Each
success occurs with the probability p=P(S). The two
parameters are n and p and we write B(n,p). We want to
determine the probability to obtain exactly k successes out
of n trials. A path containing k successes has n-k failures
and its probability is p“g"*, where q=1—p is the
probability of a failure.
Then we have to count the number of paths where k
successes occur, there are different ways of distributing k
successes in a sequence of 7 trials. n choice for the position
of the first success, n-1 for the second and n+1-k for the
kth success:
n(n—1)...(n+1—k)=n!/(n—k)! possibilities'.

/S After we divide by k! to remove

multiple counts (for example

SiS.F and S,SF correspond to the
same path). From where:

S

F ...
P(X=k) = (") p'q""
, k
|
.th n — n!
W k)T =) 1k
F .

p

Y q
p S

qF/
N

(often read aloud as « n choose k »)

n trials

n
and Y P(X=k)=1
k=0
17 n!, is said « n factorial » with n!=1X2X3...Xn.
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we show that E(X)an and V(X):npq.

The sum of two independent binomial laws of the same p is
also a binomial law. The sum of a B,(n;,p)and a By(n,,p)is

a B, (n, +712/P)-

To determine the distribution of Z sum of X and Y
we use the following property for discrete distributions:

P(z=k)=2_ P([X=i]n[Y=k-i])

2) Geometric distribution

We consider a random experiment with exactly two
possible outcomes : S="success" and F="failure" ;
p=P(S) and q=1—p=P(F). We repeat independent
trials until the first success. Let X be a random variable of
the number of trials needed to get one success. We denote
the distribution by G(p).

P(X=k)=¢"'p , ;P(X:k)zl

E(X)=1/p and V(X)=q/p’

» Example: We have a box with two white balls and a black
ball inside. The balls are indistinguishable to the touch. We
draw a ball, if we get a black ball we stop, otherwise we
return the ball to the box and we repeat. What is the
probability of drawing the first black ball in the third draw?
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Answer: P(X=3)=(2/3/1/3=4/27 .

* Application: This distribution can be used like a discrete
model of lifetime. For example, consider a cell which every
day has a chance in ten to die. If it did not die the next day,
its probability of dying the next day did not change: there is
no aging'®. Every day the cell can escape death and it can
live forever. Rather than making a decision every day, we
can decide his death every hour with a probability q' of
survival, like this g'**=qg and q'=~0.996. Or even a
choice every second, we then have different geometric
distributions witch modelize the same reality with p->0

and g->1.
g?f — Exponential distr. : f(t) = A exp(- At) with A=1.15741x10°
1.0x10°
» Geometric distr. : py = (1-p)*'p
Dots every 86400 s
for p=1.15741x10° and At=1s
0.1x10%
1d

Q8400 t(s) k

From a discrete distribution we reach a continuous one.

The elapsed time since the beginning of the experiment is
t=kAt .

Let's look at the cumulative distribution function:

18 The geometric distribution has a remarkable property, which is
known as the memoryless property.
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P(X<k)=),q 'p=2 """ Up= pe

We have used a Taylor series, indeed t>At and k>1.

_p
Then P(X<k)[f(t)de, X pe [ nre™dt so,

if we look at the limit, the geometric distribution becomes
the exponential one with A =p/At . Here for our cell A is
about 1.16x10°° per second.

The sum of two independent geometric random variables
G(p) is a negative binomial distribution BN[2,p), rank for
obtaining two successes.

For a binomial distribution the number of trials is fixed and
we look at the number of successes, in the case of the neg-
ative binomial distribution it is the opposite we are inter-
ested in the number of trials necessary to achieve a number
of successes fixed in advance. BA(rp) is the probability
distribution of the rank of the r-th success".

Then G(p)=BN(Lp)

3) Poisson distribution

The Poisson distribution expresses the probability of a
given number of events occurring in a fixed interval. The
events occur with a known frequency independent of the

19 There is also another definition: number of failures preceding the r-
th success. The relations remain true by redefining the geometric
distribution in the same way.
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time elapsed since the previous events™. If 1 is the number
of times the event occurs on average over a given interval
then the probability that the event occurs k times over this
time interval is:

k
P(X:k):%e‘* , ;P(X:k):l

e Example: During the Perseids meteor shower of
August 1911 the hourly rate of shooting stars was
50. What was the probability of seeing exactly 7
meteors in 12 minutes?

Answer:
_2 _ _ _107 -10_qo
h=5550=10 and p(x_7)_7e ~9%

The sum of two independent Poisson distributions Px(A;)
and Py(A2)is a Poisson distribution Pz(A;+A2)

20 or space traveled.
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B. Continuous Random Variables

1) Uniform distribution

;
x<a: f(x)=0 _
a<x<b:f(x):bia
x>b: f(x)=0 k;
E(X)—GT”’ and V(X):(bzza)z

To determine the distribution of Z sum of two
continuous independent random variables X and Y we
use a convolution:

fz(x):f fx()/)fy(x_}’)dy

Consider the sum of two independent uniform distributions
U(a,b). The integrand is nonzero if:

a<y<b and a<x—y<b then x—b<y<x-—a
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If 2a<x<a+b: x-b X-a

If a+b<x<2b: xb_____ x-a

If 2a<x<a+b
o1 x—2a
then x)= dv=
fz( ) ,! (b_a)z y (b_a)z

x<2a: f,(x)=0
2a<x<a+b:fz(x):<);—2()12
—a
a+b<x<2b:fz(x):(2bb_))(2
—a

x>2b: f,(x)=0

We obtain a triangular distribution:

2a a+b 2b x
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2) Exponential distribution

t=0: f(t)=re ™

_ 1
t<0: f(t)=0 S

The exponential distribution satisfies the memoryless
property: P(T>b)=P;,,(T>a+b). This distribution is
widely used to model waiting times. It is also used to model
lifetime without aging : like the lifetime for a particle
decay.

The mean life E(T) and the half-life t,,, P(T>t,,,)=0.5
, are two different times.

The distribution of the sum of two independent exponential
distributions is not an exponential distribution.
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3) Normal distribution

The normal or Gaussian distribution has previously been
described page 20.

The sum of two independent Gaussian distributions
Ny(1,01°) and Ny (U2,02°) is the Gaussian distribution

9\&(L¢1+M2, 012+622).

4) Student's t-distribution

The t-distribution is express with the number of degrees of
freedom k and the gamma function (function described in
the mathematical tools).

r k+1
For k=1 , fi(x)= 1 2 L
= s k - 3 > kLl
Vkn Fk) e
2 k

As the number of degrees of freedom grows, the t-distribu-
tion approaches the normal distribution A({0,1):

2

: _ 1
;}i?:ofk(x)_\/ﬂe

k
Variance: V,=——= if k=3,

==

) -2
Kurtosis: Bk:?)m if k=5,
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In exercises the expressions of the first Students are ex-

pressed, we show that f f.(x)dx=1, we compute the ex-

pression of the variance and finally we show on examples
that the sum of two independent Students is not a Student.

5) Chi-squared distribution

Let consider k independent normal distributions
N,1): T, Ts,... and Ti. The sum X,<:T12+T22+...+Tk2
follows a % -distribution with k degrees of freedom.

E(X,)=Y B(T)=k(V(T)}+E(T})=k

i=1
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1 K2-1 —x/2
For k=1 and x>0, X)=—F———X e
X fulx) 2Tk /2]

Expectation : E,=k Variance: V,=2k

Skewness : [31,,(:¢W
Kurtosis : (3, ,=3+12/k

The chi-squared distribution converges to a normal distri-
bution for large k . Normal distribution of expectation k
and variance 2k .
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C. Function of a continuous distribution

We have a random variable Y defined as a function of a
continuous random variable X: Y=¢p(X).

We know the law of X and we want to determine the law
of Y. We use the cumulative distribution functions F and
then we consider the derivative of Fx to get the probability
density function f.

Cumulative distribution function of X :

X

Fo(x)=P(X=x)= [ f,(x)ax

We consider the case where (x) is a strictly monotonic
function. Then Y is a continuous distribution.

Cumulative distribution function of Y :

Fu(y)=P(Y=y) and f,()=2E2

We try to express Fy(y) with Fx.

1) Case where @(x)=In(x): x>0 and Y=In X
Fy(y)=P(Y<y)=P(InX<y)=P(e"*<e’)=P(X<e’)
We have applied the inverse function ¢ (x)=¢".

The exponential function is strictly increasing, so the direc-
tion of the inequality has been preserved.

so Fy(y)=Fx(e’) and fy(y)=e’fx(e”)
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 Example: X is a uniform distribution 7I(1;2). What prob-
ability distribution is Y?
0 x<1

We have fX(X)Z 1 1<x<2 thenif e’<1, y<0 and
0 x=2

f y( y)=0 . We continue like this for the two other cases
and we obtain the distribution of Y:

0 y<O
fy(y)=| ¢ 0<y<In2
0 y=In2

2) Case where @(x)=ax+b: a#0 and Y=aX+b
If a>0:

Fy(y)=P(Y<y)=P(aX+b<y)=P(X< y;b)

A linear function is strictly increasing for a strictly positive,
the direction of the inequality is not changed.

y—b)

Then  Fy(y)=Fo(222) and fy(y)=5 (L

If a<0 :
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e Example 1: X is a uniform distribution (0,1). What
probability distribution is Y?

We have f,(x)={ 1 0<x<1, so if ——=0 and
0 x=1

a>0 then y<b and fy(y)=0 . We continue like this for
the two other cases and we obtain the distribution of Y:

0 y<b U(0,1)»U(b,a+b)

fy(J’): 1 b<y<a+b
a If @p(x)=(b-a)x+a and a<b:

U(0,1)»U(a,b)

o

y=a+b

» Example 2: X is a Gaussian distribution A{0,1). We can

find again a A{u,0) distribution with Y= 6X+u. In gen-
eral, by applying an linear function we obtain a distribution
of the same kind.
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4) Case where p(x)=¢":  Y=¢* and y>0

Fy(y)=P(e"<y)=P(X<Iny)=Fy(Iny)

1
and fy(}’):;fx“n}’) if y>0 else zero.

D. Numerical simulation

We simulate continuous and discrete probability dis-
tributions using computers. For this purpose we use uni-
form distributions created by random number generation
algorithms:

Continuous uniform distributions U(0,1) : Ran# on a
pocket calculator, ALEA() in the LibreOffice spreadsheet,
etc.

Discrete uniform distributions U(i,j) : for example,
rand(i,j) in PHP language. rand(0,999)/1000 simulates a
uniform continuous law discretized to the thousandth.

* Inverse transform sampling : the inverse transformation
method takes uniform samples between 0 and 1 from U.
We express a X distribution as a function of U by inversion
of the cumulative distribution function Fx. With F strictly
increasing: X=F '(U).

Case of an exponential distribution: fy(x)=A e if x>0
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X

else zero, then FX(X):f fo(x)dx=1—e"=y if x>0

— 00

(1-y)
A
knowing that /-U and U have the same distribution.

else zero. So x=-In and finally we simplify,

Simulation of an exponential distribution: X :_lnTU

» Simulation of two independent normal A[0;1) distribu-

tions X; and X, from two independent uniform U(0,1) dis-
tributions U; and Us:

X,=V-2InU,cos(2nU,)
X,=V—2InU,sin(2nU,)

This is the Box-Muller transform. For a Gaussian there is
no direct formulation of the cumulative distribution func-
tion F. Thus F' has no simple analytic expression.

* Method for any X distribution:

If we have a continuous distribution we obtain a discrete
distribution using class intervals for x. We then have a his-
togram and each bar of height p; is also discretized in units.
We get an outcome of the distribution X drawing randomly
and equiprobably a unit of the histogram. We get by
putting the bars end to end a full range of units. We use a
discrete uniform distribution U(1,N) where N is the total
number of units in the histogram. The generated value is
compared to its position on the range and we get a x; obser-
vation.

120



LW a0~ i
<«
X, X; X3 Xa Xs g
b e N
O L

* There are many other methods that use the different prop-
erties of the probability distributions. For example, by sim-
ulating the Bernoulli distribution, we obtain, by sum, a bi-
nomial distribution which itself allows us to simulate a nor-
mal distribution.
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E. Exercises

Exercise 1: Binomial distribution Answers p210

Check that the binomial distribution defines a
probability distribution. Calculate the expectation and
the variance as a function of the parameters n and p.

Exercise 2: Sum of binomial distributions
Answers p211

Show that the sum of independent binomial
distributions with the same parameters p is itself a
binomial distribution whose parameters will be
determined.

Exercise 3: Geometric distribution Answers p211

Check that the geometric distribution defines a
probability distribution.

Calculate the expectation and the variance as a
function of the parameter p.

Show that the sum of two independent geometric
distributions with the same parameter p is a negative

binomial distribution AB(2,p).

Exercise 4: First successes Answers p212

1- Let consider a balanced coin. What is the
probability that the first tail will appear on the fifth
toss? Knowing that the first tail has not yet appeared
on the third throw, what it is the probability that it will
appear for the first time at the eighth toss?

2- Let consider a balanced die. On average after how
many tosses appears the first six? What is the
probability that the first six will appear in the first six
throws?
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Exercise 5: Poisson distribution Answers p212

Check that the Poisson distribution defines a
probability distribution.

Calculate the expectation and the variance as a
function of the parameter A.

Determine the sum of two Poisson distributions.

Exercise 6: Uniform distribution Answers p213

Calculate the variance for a continuous uniform
distribution U(a,b).

Exercise 7: Exponential distribution
Answers on page 214

Check that the exponential distribution defines a
probability distribution.

Calculate the expectation and the variance as a
function of the parameter A.

Determine the sum of two exponential distributions.

Exercise 8: Sum of Gaussians Answers p215

1- Determine the sum of two standard normal

distributions A(0,1).
2- Determine the sum of two normal distributions.

Exercise 9: First Students Answers on page 215

1- Give the expressions of the first Student functions.
2- Give the polynomial degree in denominator, the
variance, the kurtosis and the y-intercept.

3- Give the expression of the Student for k=9,
centered and with a variance equals to 14/5.
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Exercise 10: Student's t-distribution
Answers on page 216

Whatever k, show that the Student distribution
corresponds to a probability distribution.

k+1

2 dx and

+00

We can use the integral [ f 1+—

X
carry out an integration by substitution with uzﬁ .

Exercise 11: Variance of Student's t-distribution
Answers on page 218

Determine the variance of a t-distribution.

Exercise 12: Sum of Student's t-distributions
Answers on page 218

Using an example show that the sum of two
independent t-distributions is not a t-distribution.

Exercise 13: Chi-squared distribution
Answers on page 221

Give the expressions of the first chi-square density
functions in the cases where k=1, k=2, k=3 and k=10.

Exercise 14: Product of distributions
Answers on page 221

Let X and Y be two independent distributions.

1. Propose a general method for determining the
probability distribution of Z=XY.

2. We now consider the case where X and Y are two
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independent continuous uniform distributions 7(1,2).

a. Determine the analytic expression of the Z
distribution.

b. Find the shape of probability density function of Z
with a numerical simulation of the product on a
spreadsheet for n=10,000.

Exercise 15: Sum of exponentials Answers p222

Let X be n independent exponential distributions with
the same parameters A. Let S, be the distribution of
the sum: S,=X;+X;+...+X,. We have too: M,=S,/n.

1. Determine the probability distribution S..
2. Determine the probability distribution S..
3. Determine the probability distribution M,.

Exercise 16: Inverse distribution Answers p223

Let X be a random variable with strictly positive

support.

1. Determine the probability density function of Y=1/X.

2. a. Find T, the inverse distribution of M, defined in
the previous exercise.

b. Find the inverse distribution of the Cauchy
distribution:

Cauchy distribution X: f X:% 5 for all x.

1+x
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IV. ESTIMATORS

We have a random variable X that follows a known
distribution with parameters that are unknown.
We have a n sample (X, X,...,X,) of the random variable
X from a population. We want to have a method to estimate
at best the different parameters that define our distribution
(inferential statistics). Our parameters are denoted by the
letter © and we call T, our estimator of 0.

At first we use the sample to give a point estimate of 0,
that has a high probability of being close to the parameter,
next we provide an interval estimate of O that has a high
probability of containing 0.

A. Properties of an Estimator

1) Bias
The bias of an estimator 7, is the expectation E (T,,—G) .
Then: by (0)=E(T,)—0
The estimator is unbiased if b,=0 so E(T,)=0.

It 1s best to have an unbiased estimator if not
asymptotically unbiased: lim b,=0

n=>+ow
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2) Mean Square Error

We can compare different estimators with their mean
square errors. The mean square error of 7, is defined as the
expectation E[(T,—6)°] and we show that:

rT"(G)ZV(Tn)+b2

Indeed E[(T,—0)]=E(T,’)—20E(T,)+06* (linearity of
the expectation) and eventually after simplifications of
r=V(T,)+E(T,)’—26(b+6)+6> we find the previous
expression. For an unbiased estimator its mean square error
is equal to its variance. It is useful to choose an estimator
whose mean square error tends to zero with the sample size
and the faster is the convergence the better is the estimator.
« Example 1: X, is the sample average regarding the
sample (X;,X>,...,X,) defined as:
T,=X,= 1 Z X,
ni=1
Demonstrate that X, is an estimator of the expectation
0=m=E(X) . Study its properties: bias, convergence.

E(T,)=1/n) E(X)) using linearity of the expectation
then E(T,)=1/n.nm=m and b=0.

V(T,) =1/nzz V(X;) (variance of a sum with
independent variables) then r=1/n".nc’ and r=0’/n.

The sample average is a good estimator of the expectation
of a random variable. The estimator is unbiased and the
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mean square error tends to zero when 7 tends to infinity.

e Example 2: We are looking for an estimator of the
variance of a random variable, we propose the following
two estimators:

Z(Xi_Xn)z Z(Xi_Xn)z

S 2:1':1 and Rn2: i=1
n n—1

Which, in your opinion, is the best estimator of o’ ?

S,’=1/nY (X’-2X,X,+X,") and
S, =1/nY X —2T,>. X,/n+T’=1/nY X ~T-
then E(S,))=E(X’)—E(T.)=0’+m’-V (T,)—E(T,)

2

2 —
and E(S?)=0’-9 so E(Sf):%o2 and bsz:—%
n :

By a quite similar calculation we find b,.=0.

This quantities are two estimators of the variance because
they are unbiased or asymptotically unbiased.

an is the best estimator because it has no bias.
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B. Construction of estimators

We want to have a general method to find the
appropriate estimators to estimate the parameters of a
distribution.

1) Method of Moments

We identify the moments of the population with those
of the sample. We consider as many moments as we have
parameters starting with the first moment. As we will see
on examples this method provides us with estimators but
does not guarantee us that these are the best in terms of
bias and mean square error.

Theoretical moments: m=E (X*), kelN’
-r_1 K
Sample moments: X, _EZ X,

We can also consider the moments centered or com-
pletely normalized, the approach remains the same. The
first n-sample moment is the sample average and it corre-
sponds to an excellent estimator as shown before. On the
other hand, the centered second moment has a bias, as we
have shown before we should divide by n-/ instead of n to
have a unbiased estimator.
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» Example 1: We have a checkerboard of 100 squares and
200 seeds. Every second
we randomly place a seed
in one of the squares. At
the end of the experiment
we count the number of
seeds in each square and
we count the number of
squares that contain no
seed, one seed, two seeds
and so on. Let X be the
random variable for the
numbers of seeds per
square. We obtain the following distribution:

k 0 1 2 3 4 5 6 7
n | 12 |28 | 34 | 10 | 8 7 0 1 0

We assume that this distribution follows a Poisson
distribution. Deduce the value of the parameter A.

The parameter of this distribution is equal to the
expectation therefore according to the theorem of
moments, A is estimated by the sample average:

n P
Klex,:lanxk then A=2 %
ni=; ny=1

This result is consistent with our model, indeed let us name
n the number of squares and N the number of seeds. We
have a uniform random distribution. We could, for
example, use two balanced ten faces dice of different colors
for the horizontal and vertical position. The frequency of

21 Using the second moment we will find A=2.06 .
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the event per second for each square is //n. For a Poisson
distribution at any instant the event can occur, here the
time is discretized, nevertheless the approximation of a
continuous time is correct because one second is a small
duration compared to that of 200 seconds of the
experiment. So we can take A=N/n. We tend to a
Poisson distribution when the number of squares and seeds
tend to infinity.

* Example 2: We assume that the lifespan of a glass follows
an exponential distribution. We observe in months the
following lifetimes: 7, 5, 37, 35, 17, 9, 6, 13, 4 and 8
months. Determine thee parameter A of the distribution.

For an exponential distribution E(T )= )\ , hence by using

the first moment: k=n— and 7\=1—0:0.071.

141
2t
i=1

We thus have a point estimate of the parameter A and the
life expectancy is about 14 months.

We will show in an exercise that this estimator T, has a
) n A
bias: E(T,)J=——A\ and ==
( n ) n—1 b T, n—1
This bias and its mean square error tend to zero:
2 <n+2)
ry =N o+——=—=.
" (n —1 ) (n — 2)
We construct from this estimator a new estimator W,
n— 1 _n—1

X,
We show that E(W n):x and ry, =V(W,)=1"/(n-2).
This estimator is better than the previous: zero bias and

without bias: W =
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lower risk (mean square error). A new estimate of the
parameter gives A=0.064 and the life expectancy is about
16 months.

* Example 3: We consider that the mass of the apples
produced by a tree follow a normal distribution. We
randomly draw and measure the following masses in grams:

158 131 |146 |158 |125 [153 |166 |121
127 123 195 |149 124 153 |123 |129

Determine the mean and standard deviation of the
distribution.

1S na15, Pne=Sn? wa o=z,
ni=y n

i=1

* Example 4: The planks produced by a sawmill have a
length which follows a uniform distribution U(a,b).

We measure the lengths in millimeters of 8 planks drawn at
random: 2017, 1987, 2018, 2014, 2003, 1985, 2013 and
1981. Estimate a and b.

+b —
We have E(X)Za =X,

9 _(b—a)2 (a+b)2_az+ab+b2_—z
and E(X)— D + R 3 =X,

then a+b=2X7n1 and ab=4X7n1 23X}

n

Eventually a~1977 and b=2028
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2) Method of Maximum Likelihood

Let X be a discrete or continuous random variable. We
want to estimate a unknown parameter 0 from a set of
observations {x;}.

We define a function f(x,0) such that:

P,(X=x) for a discrete variable
f(x,0) = or
fo(x) for a continuous variable

We define the likelihood function L. This is a function of
0, determine by the numbers x;, x, . . ., Xu:

L(X, X5y X,y X,,0)=f(x,,0) X f(x,,0)X...Xf(x,,0)

also we can simply write:
L(X,, Xy, X:,0sx,,0) = []F(x,0)
i=1

The value of the parameter for which the product of the
probabilities, or probability densities, taken at the
different points of the sample, is maximum, is considered
the most probable value. The maximum likelihood
estimate of O is the value that maximizes the likelihood
function L(0).

The maximum likelihood principle is simple and the
method is easy to implement:

dL(x,,0) " L(x;,0)
T =0 and T <0
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Usually on can find the maximum by differentiating the
likelihood function L(0). However the calculation of the
derivative may be tedious, it is why we prefer to consider
the logarithm of L(0). The logarithm is a increasing
function and we can consider the extreme values of
In(L(0)) instead of L(0).

* Example 1: Let us take again the case of a Poisson
distribution and determine the estimator of A by the
method of maximum likelihood.

Px(X:X)Z%ffA and L=]] i‘;e%:eﬂmn i‘,
* i=1 i=1

it

InL=

lL X
and an ZW

then 7»212 X;
ni=y

We find the same estimator as by the previous method.

* Example 2: Let us take again the case of an exponential
distribution and determine the estimator of A by the
method of maximum likelihood.
n —an:[i
fo(t)=re™ and L:H re Mi=N"e &

i=1
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B B n )\‘_X( _2_ n
InL=nlnA zlnx', and = t;

i i=1

then A=

i=1

The same estimator as by the previous method.

* Example 3: Let us take again the case of a Gaussian
distribution and determine the estimators of u and o by the
method of maximum likelihood.

2

Lt s

f(x):\/ﬂ'oe and L= H

\/TEG

SO lnL——nlno—Eln (2m) —%Z

olnL :Z”: X,—u

1 n
=0 and uwu=—-2 x
uw i=1 O n;

olnL n 1« 1<
W:_E-F?;(Xi_u)zzo and OZ—EIZ X;— M

=1

We obtain the same estimators as by the moment theorem
and we have again an estimator of the variance biased.
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* Example 4: Let consider now the uniform distribution.

1
Lix,a,b)=]1f(x,a,b)=|(b—a)

i=1

n lf {Xi}c[a’b]
0 else

For a fixed, smaller is b bigger is the likelihood, then
b=max({x,}) .
For b fixed, bigger is a bigger is the likelihood, then
a=min({x;}) .

We have here very different estimators than by the method
of moments, for the example of the planks we have the
following estimates: a=1981 and b=2018 .

These estimators are biased, for example b is necessarily
smaller than the theoretical value, but, contrary to the
method of moments we are assured that all the x; belong to
[a, b].

138



C. Interval estimate

‘We now have effective tools to determine the values of
the parameters of a distribution. We have determined point
estimates and now we want to determine a confidence inter-
val.

The central limit theorem allows, from a large sample,
to estimate the mean of a probability distribution with a
confidence interval.

But what about the other parameters different from
the mean? For example, what are the uncertainties on the
parameter A of an exponential distribution, or the bounds
a and b for a uniform distribution?

We consider an unbiased estimator and if the estima-
tor is biased we create a new estimator by removing the
bias.

We use three different methods. The integral method which
requires to determine the full probability distribution of the
estimator. A second method, simpler, provides an inequal-
ity that overestimates our uncertainty, but only requires
knowledge of the variance of the estimator. And finally a
third by numerical simulation.

For the second method we use the Chebyshev's in-
equality. This inequality can be applied to any probability
distribution in which the mean and variance are defined.
We do not have to know the aspects of the estimator distri-
bution, only its variance, but the inequality generally gives a
poor bound:
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Ve>0, P(X—E(X)=¢) <

* Example 1: Consider again the checkerboard and the
Poisson distribution with parameter A. This parameter is
estimated by the mean and we can therefore, in the case of
large numbers, use the central limit theorem:

A=\t 0/Vn

Let us estimate the variance:

k O, 1 23|45 7
kihw |2 |-1] 0] 1 23|45 6
k)| 4] 1 0| 1|49 16|25 36
n 12128 3 108 |7 0/|1]0

G}L2:ni1 Z (Xi—)_()z , 0,~=1.44 and A=2.0+0.3 with
i=1

95% confidence.

Here the sample size is not sufficient for this method but
we have illustrated the general method for large samples.
We probably have underestimated the width of the interval.

* Second example: The waiting time of a train follows a
uniform distribution 7I(0,a) We observe the following
waiting times 3, 12, 7, 17, 8, 14, 2, 5, 10, 14, 15 and 11
minutes. What is the value of a ?

What is the bias, the variance of the estimator 7, and the
uncertainty on a at 90% confidence?
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a) Let us first use the method of maximum likelihood
which gives us the estimator 7, , the distribution of the
maximum of a number n of independent, identically
distributed variables: T,=max({X}})

a is here estimated at 17 minutes.

The distribution of the maximum is such that:
P(T,<x)=P([X,<x]N[X,<x]N..N[X,<x])

the variables are independents, then:

P(T,<x) HP (X,<x)

Cumulative distribution function of X: Fy(x)=P(X <x)
= H F X, ( X ) =
i=1

F; (x)=0 if x<0, Fr (x)=1 if x>a

n

for 0<x<a

dFT( ) X"t

So we obtain the density of T, : fr, (x)= T
X a

for 0<x<a and f; (x)=0 else.

Expectati _N T g N
xpectation: E(T, )= fxfT( )dx a”'!x dx 1

. C n a
The estimator 7, is biased: b, =——a—a=———
" n+l n+1

a is underestimated and the bias is asymptotically zero.
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. n ¢ n+
Variance: E(X fofT dx—F_(]:x 1dx—n+2a2
n n’ na’
V(T,)=E(X*)—E(X)=——=a2- a2=

n+2 (n+1)* (n+2)(n+1}

It is better to take an unbiased estimator, for this we re-
move the bias and we get W,:

2
w,= n—lT with by, =0 and V(w, )= a
" n(n+2)

New estimate of a with W, : a=~18.4 minutes.

For the uncertainty Aa we will compare three methods.

-> With determine a confidence interval with the Cheby-
shev's inequality:
V(W.)

2
€

We apply the inequality to W, : P(|W —al>€)<
so P(|W,—a|<e)=P(—e<W,—a=<e)
and Plexza—W,>—¢)=P(U +e=a=W,—¢)

v(w,)

we set ¢ :\/ o and we have:

1-P(W,—e<a<W, +€)<a

Eventually'

P(w, — V( <w, \/V > 1-a
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In the 90% confidence case o.=0.1 and for our sample

vV(w,)
2.0 and Aa= o =4.5.

18.4°
VIWe)=1 02

Then 13.9<a<22.9 and a=~18.4+4.5 minutes.

-> Let us determine a confidence interval with an integral
calculation on the probability density of the estimator.

We determine the probability density of W,:

P(W,<x)=P (-2

mWnSmX)ZP(TnS

x)

n+1

n

n n x . n+1
—p =X i o<x<T g
Fy,(0)=F, ni1 T \nria) U TR
F (%)== Xl i 0<x <™ g
s a(n+1) " T n

and f, (x)=0 else.

We have an asymmetric probability distribution whose
maximum corresponds to the upper bound. For a 90% con-
fidence we remove the 10% of the left distribution tail from
the confidence interval.

Thus we define d.. and a.» such as:

+1
Upper bound: a,,,,= nT a
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2

13 X17=19.95 and a,,~20.0 minutes.

SO amaXZ(E

Lower bound: f fw (x)dx=1-a
By numerical calculation with a=~18.4 and n=12,
20
| fu (x)dx=09 with a,,~16.4 minutes.

+1.6

In conclusion, a=18.4 minutes

with 90% confidence.

The interval found is asymmetrical. The bounds are in-
cluded into those of the Chebyshev's inequality and we
have here a more precise estimate of a.

-> Let us now perform a numerical simulation on a
spreadsheet. The ALEA() function of the spreadsheet pro-
vides real randomly and uniformly distributed between O
and 1. Then we multiply by the point estimate of a to ob-
tain the distributions X;=Ui(0,a). We generate 10,000 sam-
ples of size 12. We place the maximum of each of these
samples on a graph and thus have the sampling distribution
of T,:
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fWn (x)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Estimator unbiased obtained from the Maximum Likelihood

Simulation of Wn with N=10 000 and n=12

L
g’ ety ™" o

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

X
We thus find the same results as by the preceding method
(file : www.incertitudes.fr/livre/Train.ods).

a) We now use the estimator of the moment theorem:
T .=2X, . Here, for large n, we can use the central limit
theorem because an affine function of a distribution gives a
new distribution of the same form. We estimate the mean
with the Gaussian law:

= 3+12+..+11
B 12

(3—x%)+.

~983 and s= ~~4.88

m :}itws/\/zz 9.8+2.3 with 90% confidence
Then a=19.7+4.6 minutes with 90% confidence.

In this case the value of 7 is only 12 and the distribution of
the population is not normal, we want nevertheless to show
how one would proceed for n large. As we will see with
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fTn(x)

numerical simulation, the interval is thus underestimated.

Indeed by carrying out a numerical simulation with this

estimator, d=19.7+5.5 minutes with 90% confidence:

0.16
Estimator obtained with the Method of Moments

0.14
Simulation of Tn with N=10 000 and n=12

012
01 ol
0.08 . .
0.06

0.04

0.02 A =
[T

() ——tenmem T

e x4 O
- —

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 B8 29 D

X

Comparison of the results of the different methods with
90% confidence:

Chebyshev's inequality — . :
Maximum 13.9 18.4 22.9
Likelihood Integrals and o
Simulation 16.4 18.4 20.0
Central Limit Theorem . _ .
Method (sample too small) 15.1 19.7 243
of
Moments Simulation : . :
14.2 19.7 25.2
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In conclusion, the maximum likelihood estimator converges
much faster than that of the moment theorem and we
prefer this first method. The variance converges to 1/n’
instead of 1/n:

2 2
a a
[V w and [V T =—
( n) ML n(n 2) ( n) MM 3”
70
. Convergence of variances
60
50 B V(n) Method of Moments
0 o & V(n) Maximum Likelihood
]
30
]
.
20 =
. "
[ ]
10 * " L -
* .o .llll.........
0 $94000000000000000000
0 5 10 15 20 25 30
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D. Exercises

Exercise 1 : Estimators of the mean
Answers p224

Let consider the (X;, X2, X3). X;, X; and X3 are three
independent variables with the same distribution,
expectation m and variance o?.

Compare the following three proposed estimators to
estimate the mean m of the sample:

A3=(X1+X2+X3)/3, Bs=(X;+2X:+3X5)/6 and
C3=(X1+2X2+X3)/3.

Exercise 2 : Homokinetic Beam Answers p224

We consider a homokinetic beam of C* ionized
carbon atoms. We measure the momentum and the
kinetic energy of 100 atoms of the beam. The beam is
considered perfectly unidirectional.

The total momentum magnitude and kinetic energy
are:
100

p:Z mvy,;=2.418X 10 * kg.m/s and

i=1

mv;/=1.518x10 ° ] with m=1.993x10% kg.

100
E= Z
im1

N | =

Let V be the probability distribution of the speed of
the ions. Determine the average speed v, its variance
ov* and the uncertainty Av with 95% confidence, using
the sample taken and the appropriate estimators.
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Exercise 3 : Two estimators Answers p225

Let X be the following discrete random variable:

Values 0 1 2
Probabilities 30 0 1-46

1. What values of 0 define a valid probability distribu-
tion?

2. Calculate E(X) and V(X).
3. Let (X3, X3,..., X») be a sample of X.

We have )Tn:lz X, and T,=aX,+b.
i=1
Determine a and b for which T, is an estimator without
bias for 6.
Determine V(T,).

4. We now consider the random variable Y; defined for
all i€[0;n] by Yi=1if X;=1 and Y:=0 otherwise.

Let Zn:Z Y. . Determine E(Z.).

i=1

yA
Show that Un:—” is an unbiased estimator of 6. De-
n

termine V(U,).

5. We make estimates of 0 with the following realiza-
tions:

Values 0 1 2
Frequencies 31 12 57

Estimate 6. Which estimator do you prefer?
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Exercise 4 : Ballot boxes Answers p225

Two identical urns contain the same proportion p of
black balls. In the first ballot box we draw with
remplacement a sample of size n; and we note P; the
proportion of black balls in this sample. We perform
the same experiment for the second urn.

p,+P,
We define T:T and U=xP,+(1—x)P,

with x € 10,1[

Show that T and U are two estimators of p.
Which one is the best ?

Determine the value of x to have the optimum
estimator.

Exercise 5 : Continuous variable Answers p226

We consider the continuous
a

Varigble X with the following if x>1
density: f (x): ar1

Where a is the parameter we )
want to estimate (a>1). 0 otherwise

1. Check that f defines a valid probability density.
2. Calculate E(X).

3. Determine estimators of a by the method of
maximum likelihood and by the method of moments.

4. Give point estimates of a for the following

observations:
1.16/1.80/1.04/3.40/1.22/1.06/1.35/1.10.

5. Can we calculate V(X)?

6. Perform a numerical simulation of the law of X.
What can we guess about the biases and convergences
of the estimators found?
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Exercise 6 : Linear density Answers p229

Consider the following continuous random variable X:

ax+b if 0=<x<1
f(x)=

0 otherwise

1. Express b as a function of a such that f defines a
probability distribution.

2. Calculate E(X) and V(X).

3. Determine an estimator T, of a by the method of
moments. Discuss the properties of this estimator.

4. We draw a sample:
‘ 0.81 ‘ 0.67 ‘ 0.72 ‘ 0.41 ‘ 0.93 ‘ 0.55 ‘ 0.28 ‘ 0.09 ‘ 0.89 ‘

Determine a point estimate of a. How would we get an
interval estimate?

Exercise 7 : Estimators for the exponential law
Answers p230

The exercise of the previous chapter on page 125
provides the expression of the probability density of
the estimator T, of A obtained in the course:

nan _nh
f (x):Le * if x>0 and zero if not
& (n—1)1x"™"

1. Determine the expectation, bias, variance and the
mean square error of Th.
n—1 . . .
2. Let W,=——T,. Determine the expectation, bias,
n

variance and the mean square error of W,.

3. Which estimator would you recommend for A?
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Exercise 8 : Decays Answers p231

The law of probability X of particle decay as a
function of time follows an exponential distribution
with parameter A. We measure the lifetimes in

22 332 1.93 0.88 4.3 microseconds of a sample

7.1 0.65 053 4.69 031 ©Of ten particles and we

want to deduce a point

estimate and an interval estimate of A. We will use
different methods and comment on them.

1. With the central limit theorem could you estimate
the expectation m of X and its uncertainty with a
confidence of 90% (m : mean lifetime)? With the
propagation of uncertainties formula we then could
find the value of A with its uncertainty. What do you
think about this estimate of A?

2. Let T, be the estimator of A found during the lesson.

Like we shown previously this one is biased and then
n—1

we use W”:TT” .

Determine by an integral calculus the uncertainty on A
with 90% confidence.

3. Find now this result by numerical simulation.
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V. Measure with a ruler

Article published in the BUP [ii].

ABSTRACT

The measurement of a physical quantity by an acquisition
system induces because its resolution a discretization error.
We are here concerned with measuring a length with a
graduated ruler. This type of measure leads us to consider a
uniform continuous probability distribution. We then use a
convolution to determine the uncertainty with its confidence
of a sum of lengths. Finally, we generalize to the general
case of the calculation of uncertainties for independent
random variables using the error propagation formula.

INTRODUCTION

We want to measure lengths and evaluate uncertainties
as exactly as possible. Uncertainties about the measured
values and their sums. We have a ruler of 15cm graduated
to the millimeter and two sets of cards. The ruler is
assumed to be perfect and the cards of each game identical.
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1. MEASURE OF THE LENGTH OF ONE CARD

We  place the
graduation zero on
the left edge of the
card. On the right
edge we consider
the graduation clo-
sest to the edge.
The experimenter
does not read
between the gra-

duations. The thickness of the lines

which delimit a graduation is considered negligible
compared with the width of this graduation. We get thus
for the deck 1:

x,=8.4£0.05cm.
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Concerning the cards of the second deck:
x,=11.2%+0.05cm.

1/5 .........................

80%

)

0 Xmin X Xmax X

We accept a loss of information due to the resolution
6=1mm of the ruler. When we use these data later, all
values between x_. =x —6/2 and X _; =x,—6/2 are
equally probable. We have to consider a continuous and
uniform random variable X. x 1is a realization of X. This

distribution of probability has a range E=x_  —x_ . and

min

its density f (x) verify:

+0

ff(x)dx:1

—00

The probability to be between x and x+dx is f(x)dx .
The result is necessarily between x . and X . : for
example x,=8.4+0.05cm with 100% of confidence, but
x,=8.4+0.04 cm with a probability of 80%.
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To characterize the spreading of a distribution we consider
the range E and the standard deviation o whose definition
for a continuous law is:

V=0= [ (x-x, Pf(x)dx,
V is called the variance. For a uniform distribution:
0=08/V12=0.295 ,

and we have X=X,*0 with 58% confidence. The
standard deviation is an appropriate quantity to characterize
the width of a distribution. The range is defined by the
extreme values which may be unrepresentative or absurds.

2. LENGTH OF TWO CARDS PUT END TO END

We want to determine the uncertainty on X with
X=X+ X, If we plot X, as a function of X; the set of
the possible points forms a square domain. The set of
points such as X is constant is straight line segment of
slope -1 and intercept x : X,=—X;+X  There is only one
case where X=X, then lxlz X! min > X2=X2minJ at point
A in the figure. However on all the segment [CD] we get
X=X, . We understand that the different values of X do

not have the same probability.
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The probability density f of X is computed from those of
Xi and X,. For a sum of independent random variables the
result is given by a convolution [iii] :

x<x,. =f(x)=0
Xmin<X<xm$f(x):M
x)=[ F(y)fa(x=y)dy = 2y
X <X<Xmax2f(x): magz
x>x,  =f(x)=0
f
G
26 .
/ 80% N\
0 ><min Xm Xmax X



We then have a triangular probability distribution.
We obtain x=19.6%£0.1cm with 100% confidence, and
x=19.6+0.055cm with 80% confidence.

3. ANALOGY WITH THE THROW OF TWO DICE

For each die the six values are equally likely. Here the
law of probability is no longer continuous but discrete. We
launch two dice simultaneously, the sum of the values
obtained is between two and 12. In this case, there is no
equiprobability, a way to get two with a double one, two
ways to get three with one and two or two and one ... to get
seven we have the maximum of possibilities. We thus find a
triangular distribution.

f
One die Two dice
999999 4 I e
oo [ EE [ A
L P * °
], [T ° Py
] [T e ®
[K s ® Py
0123 45%86 X 012345467289 11112 X

4. LENGTH OF TWO CARDS OF THE SAME DECK
PUT END TO END
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The cards of a deck are supposed identical then if the
length of one of them is overestimated, it will be the same
for the second one. In this case the errors are added and
can not be compensated. For two different cards, the first
measure can be underestimated and the second
overestimated, and a compensation can occur. Here it is no
longer the case and when X=X+X.," we obtain a
uniform distribution of width 2 § . Our random variables
are not independent.

For the deck 1:

x1=8.4iO.04 cm=x =2x1=16.8i0.08cm
with a confidence of 80%.

5. SUM OF N INDEPENDENT LENGTHS

N
We have X :Z X,. Each length X, follow a

i=1
uniform distribution of width & . For the sum of nine
independent random variables after iteration of the

calculation we obtain the following curve:
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T
80%
X
Xy 01 Xn Ky 0012

In this case we obtain X=X, +0.11cm with 80%
confidence. With 100% confidence: X:Xmoyi 0.45¢cm |
which leads us to consider domains where the probability
of presence of X is really negligible. An uncertainty of
0.45cm seems unnecessary while 99% of the cases were
already present with an uncertainty of 0.22cm.

Working with a confidence of 100% it is like considering

the range, it is additive for a sum of variables. The range is
proportional to N.
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80% 95% 99%

N=1| 0405 | 0485 | 0.508
210556 | 0786 | 0905
310666 | 0976 | 1.196
410756 | 1.126 | 1416
510846 | 1.256 | 1.606
610926 | 1.386 | 1.76 6
710996 | 1496 | 1916

8] 1.066 | 1.596 | 2.056

9| 1128 | 1.698 | 2.186
10| 128 1.86 236
20| 176 250 3.36
50| 266 | 406 5208
100| 376 576 7406

But this approach does not take into account one thing: the
curve narrows around the mean when N increases. There is
another additive quantity: the variance. The standard
deviation, square root of the variance, is proportional to YN
and takes account of error compensations.

We obtain a bell curve. A statistical theorem, called the
limit central theorem, indicates that for N large the curve
tends to a Gaussian. The range of a Gaussian is infinite for
a finite standard deviation.

We summarize the evolution of the uncertainty on the
sum of N independent lengths measured with the same
resolution ¢ in a table. In italics, from N=10, these are
numerical simulations carried out on a computer by
generating random numbers.
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The results of the measurements are often given with
a confidence of 95%, which corresponds for a Gaussian to
an uncertainty of about 20 .

6. OTHER APPLICATIONS

A runner wishes to measure his travel time. He has a
watch with a digital display. The watch shows that he starts
at 10h52min and arrives at 11h11min . The display is
at the minute, so he starts between 10h52min00s and

10h52min 59s . Hence the date of departure is within the
interval {;=10h52min30s+30s | The resolution is one
minute. The duration of the course is At=t,—t,. The

results remain true for a difference. We have N=2 and
A t=19min+47s with 95% confidence.

Same procedure if students measure an angular difference
with a goniometer. Each measurement is within a minute
of arc so the uncertainty of the angular difference is of 47
arc seconds with a confidence of 95%.

Seven persons are in an elevator. Its maximum load is
500kg. Their individual masses are measured with a
resolution of one kilogram. The total mass is 499kg. What
is the probability of being overloaded?

For N=7 the uncertainty reaches one kilogram with a

confidence of 80%. So there is a one out of ten chance for
the elevator to be overloaded.
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In the laboratory many measuring instruments have
digital displays. The resolution is define by the last digit.
But the overall uncertainty is much higher. It is necessary
to consult the operating instructions of each device.

CONCLUSION

The general approach consists in combining laws of
probabilities. The mathematical tool used is a change of
variables, then one or more integrations. For the measure
with a ruler described in this article, it was a sum of two
independent random variables and we obtained a
convolution.

If one wants to do a faster calculation, an analysis of
variance may be enough. We have a random variable X
that depends on N independent random variables X :
X:f(Xl’Xg’---’Xi’-“’XN). We call Gi the
standard deviation of X, and o that of X . For finite
0; and small variations, we have the propagation of
standard deviations formula [iv]:

2% (Of V' 2
G_g(axl) Oi

And, independently of the probability distributions, this
relation between the variances remains true. One can thus
give its result with an uncertainty for 20 or 30 .

Is there a similar formula with the confidences? Yes, but it
is approximate, it is the propagation of uncertainties
formula:
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ar=XEhax

1

with X=X, =A%, [=f,,*A [ and a constant
confidence. This formula is very useful and allows a quick
and reasonable calculation of the combined uncertainties.
Moreover, it is exact if the form of the distributions is the
same for X and the X,. For example, if the distributions
X, are Gaussian, any linear combination is also Gaussian.

We thus take account of compensations and avoid using the

formula A f :Z ‘6 flo X,-|A X, which overestimates
i=1

the uncertainties, sometimes even with such excess that one
loses its physical sense. This last formula does not take into
account any compensation, we have the worst situation,
statistically unlikely. Here, for example, for N=100, one
would have an uncertainty of 50 6 , instead of 5.7 in
practice (95% confidence).

In this article we focused on the resolution of an
acquisition system that gives a discretization error. But one
can also consider systematic errors and random errors.
Here the ruler was supposed perfect, that means, accurate
and precise.
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V1. Mathematical Tools

The mathematical tools used in chapter 1 are studied into
the high school scientific section. The partial derivatives used in
chapter 2 are taught during the first year of university but we
quickly understand the link with the derivatives seen at the high
school. It is at the end of the second chapter, with the use of
matrices for generalized regression, that we immerse ourselves in
university education. My goal is not to review or introduce all
these concepts, only a small recap that can be useful to solve the
exercises proposed.

A - Derivatives

flx+e)—f(x)

1- Definition : [ '(x)=lim ;

e—0

For example if f(x)=x?:

(x+e)—x"=x"+2xe+e’—x’~2xe and f '(x)=2x.

On a graph the derivative corresponds to the slope of the curve at
each point.

2- Rules for basic and combined functions:

function f derivative f ' Af
ax a (constant) A(ax)=lalA x
X" ax™! A(xY) =] x* YA x
sin(x) cos( x) A(sin(x))=|cos(x)|A x
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cos( x) —sin (x) A(cos(x))=lsin(x)|A x
e’ e” Ae")=e"Ax
In(x) 1/x A(In(x))=A x/|x|
u+v u'+v' (1 and v as functions of x)
uv u'vtv'u (product rule)
u u'v—=v'u )
v T (quotient rule)
f(g(x)) g'(x) f'(g(x)) (chain rule)
1_ -1 l r—(_ ’1*1__L
. ;—X SO (X> _( 1)X - XZ
1 1
. Vx=x? then (Jx)'=ix? =_1_
Wx)r=3x =3k
. (sin(x?))'=(x")" cos(x*)=2x cos(x’)

B - Partial derivatives

A partial derivative of a function of several variables is its
derivative with respect to one of those variables, with the others
held constant. For example, consider the following function of
three variables:

f(xy,2) = x*-2z + xy

We can look at the variations of this function with respect to a
variable while considering the other constants. We proceed then
as for a derivative. So we have:
of

=2x+y | (E) =X and

of
S =_92
az)w

The first expression is said "partial derivative of f with respect to
x"treating y and z like constants. 0: curly d.
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C - Taylor series

With the notion of derivative we have studied the first-order
behavior of a function around a point, here we refine to the
higher orders.

For every infinitely differentiable function and for € <1 we

have the following development in the neighborhood of a point:

2 3 n
f(xo"'e):f(xo)"'ef’(Xo)"'%f"(Xo)"'%f(s)(xo)"'---+%f(n)(xo)+--~
The more we take high order terms the better is the
approximation. For example for f(x)=sin(x) and x,=0 we

3 2

find: sin(e)ze—% , in the same way Cos(e):l—%.
Also: exp(e)~1+e In(1+e)=e (1+€)*~1+ae

D - Integrals

2
g
We show in maths that: J‘ e dx=vT
X=—00
For the standard normal distribution, we can verify that the mean
is zero and that the standard deviation is equal to 1:

» +0
plx|= > e 2 and M—f -p(x)dx:O because the
V£ TT —

integral over a symmetric interval of an odd function is zero.
o —fx — 2dx- 2)dx then
J'lT
e +a e +o0
' 2
o’V2n=[-xe z]ifi—f (—1)e ? dx:0+\/§f e “dx
— —0

so the standard deviation equals one.
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We have used an integration by parts:
b
f u(x)v'(x)dx =[u(x)v(x)]2—f u'(x)v(x)dx

then we did an integration by substitution: x'=x/ V2 .
We <can go further by calculating the skewness

+00 +o
3 : .
Uy= f X ~p(x)dx , the kurtosis M4:f X4-p(x)dx , and, in
Y 2

+00
general, the moments of ordern U = f x"p(x)dx .

—00

All these moments allow us to characterize a distribution.

For a Gaussian p,=0 (symmetric). If this coefficient is
negative the curve spreads to the left, if it is positive the curve
spreads to the right. For a Gaussian f,=u,/c'=3. If this

coefficient is less than 3 the curve is more flat than a Gaussian.
For a binomial distribution : 3,=3—8/n .

Integration by substitution:

Let u=g '(x) be a new variable with g~' a continuous

function strictly monotonic on [a,b] and g the inverse function,

then:
b

g'(b)
| f(x)dx= I( )f(g(U))g'(U)du

a
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E — Series
n

Binomial formula: (a+b)'= Z

k=0

k —k
Mg p"

Derivatives of geometric series:
1

it |ql<1 then 2.q'= _q

k=0

1
L. . N k=1
we take the derivative with respect to q: Z k = (1 )2
k= —q

then Zk(k—1)q"*2:%
k=2 (1-q)

And finally we find the negative binomial formula:

Zkk 1) (ker+1)g =—"
(1_q)r+1
“ 1 :i(k)qk_
FEEr=1t

o . : e X"
A definition of the exponential function: e"= Z ?

F - Gamma function r(x):To e 'dt

This function is an extension of the factorial to real and complex
number (except for 0, -1, -2...)>. We will use it for half-integer
numbers. We demonstrate with an integration by parts:

['(x+1)=xT(x) . [(1)=1 then for n integer
I'(n+1)=n!. Moreover, ['(1/2)=vx allows to calculate the

function for the half-integers.
22 For example 7T!~=7.2.
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VII. Answers to Exercises

Chapter I : Random Variable

E1: Ages Exercise on page 37

n=15; mode=18; median=18; mean=18.333; geometric mean=18.303;
range=4; standard deviation=1.113; root mean square deviation=1.075;
mean deviation=0.844.

E2 : Card Game Exercise on page 37

Number of possible draws: 32x31x30x29x28 divided by the different
ways of arranging 5 cards 5x4x3x2x1=5! permutations then 201 376
hands (32 choose 5).

* Number of possible draws for a four aces hand: only one possiblity
for the 4 aces, and 28 possibilities for the fifth card, so 28 possible
hands (one hand = 120 possible draws).

Hence the probability p=28/201376=139 chances on a million=1 out
of 7192=0,014%.

* For a flush: each color has 8 cards. Number of ways to choose 5
8! 8 5
- —C>
5!1(8—5)! ~ (5) =Cg=36.
There are 4 colors : 4x56 =224.

Hence the probability p =224 /201 376 =1 out of 899 = 0,11%.

cards among 8 =

E3 : Gravity Field Exercise on page 37

a) We have an important dispersion. We could indicate less significant
figures.
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b) g =9.32 m/s% 0,=1.994m/s*~2m/s>

¢) We assume that the data follow a Gaussian distribution, then we can
use a Student's distribution for the sampling distribution:

Ag = 2.36.1.994N8 = 1.66 m/s>. Then g=9.32+1.66m/s*> and the
known value is within the confidence interval found:

7.66 m/s? < g=9.81m/s? < 10.98 m/s?> with 95% confidence.
d) We are at the distance o from the center g=~10m/s?, then a probabil-
ity of 68% (prediction interval: Gaussian).

E4 : Elevator  Exercise on page 38 25 out of 1000.

ES : Assignment Exercise on page 38
a) n=35, N=8.29 and ox=4.40 .

b) Grades with their frequencies:

Grades |0|1/2/3/4]5/6/7/8(9/ 10|11 12|13 |14 |15 |16|17 |18 |19 20

Freq. |0/1/3|2/1/5/2/2/2/1/4 |4 |2 |2 |03 |0 |0 |1 |0 O

AR }'Y"S'u) u‘n’(s'\qﬁlfl(élﬂ‘(x 19 Nl'

be——>
N

c) Class intervals, frequencies and relative frequencies:

Class I. [[0,1,2] |[3.4,5] | [6,7,8] | [9,10,11] |[12,13,14] | [15,16,17] |[18,19,20]

Freq. 4 8 6 9 4 3 1
F.rel. | 114% |229% | 171% | 257% | 11.4% 8.57% 2.86%

When we group the data into class intervals there is a loss of informa-
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tion. But we gain visibility. We can more easily bring out an overall be-
havior and categories of students. Relative frequencies directly indicate
the percentage of students in each class, for example, 34% of students
appear in great difficulty, which is more difficult to interpret on the first
diagram.

? Y/

o lﬁ/—-l—\

o 119 4
4

qIN. P
%13 = S R 2

144 - .0 ).k
02xé{ . -, |- ..

3 ’_.9_/;_‘ !-3";}__7
1€ S Tt

A

E6 : Yahtzee  Exercise on page 38
1) 1/1296

2) (145+15+35+70)/6°=1.65%

3) a) n=30, S=16,73 and 0s=3.88.

b) For the sum of five dice we get a distribution of the population al-
ready close to a Gaussian (see on p18 for four dice) and we use the Stu-
dent t-value: AS=1.45 and S=16.73+1.45 with a confidence of 95%.
Here the population is infinite and known. We find p,,=17.5 . It is
consistent. There is no reason to think that the dice are unbalanced.

C) N g‘\
6 »
y
5 7
4 Z
_Z
> g
2z )

54629 MRS (19 1 12 *S26 s
b R S W g w n.zzk

d) The sum is the result of five independent throws, we can think ac-
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cording to the central limit theorem that we approach a Gaussian: (24-
wW/os=1.68 . We are close to tws%, so half 5% on the right tail. So 1
chance out of 20 (on our throws here: 1/30, it's all right).

Z'} S/,

>
oS

E7 : Elastic Bands  Exercise on page 39
H, : 10 elastic bands out of 1000 are not functional.

Let consider the discrete random variable X, , its value is 1 if the elastic
is not functional and O if the elastic works. Probability to have a non
functional elastic band: p=0.01

p=0.01x1+0.99x0=0.01 and 0%=0.01x0.992+0.99x0.012 then 6=~0.0995
We have Xx=u+t,0/Vn and X=n/n then n,=n(u+t,o/Vn).

*For n=1000: n is large and according to the central limit theorem we
have a normal distribution. We look for a value of n, that has right tail
probability 1%.

So n,=1000(0.01+2.33x0.099/11000)=17.3 and we reject the delivery
from n,=18 damaged elastics among the 1000 randomly drawn. Using
the binomial law n,=19, close to 18 (see below for the explanation).

*For n=200: on the basis of the same reasoning we get n,=6, indeed
n,~200(0.01+2.33X0.099/v200)~5.3 . But is the hypothesis of large
numbers justified here? n must be large, for example greater than 30,
but also np and n(l-p) must also be sufficiently large, for example
greater than 5. As here p is not around fifty-fifty but on the contrary
close to an edge, unlikely or almost certain, we will check the validity
by making an exact calculation.

We have a sequence of identical and independent trials (the large num-
ber of elastics in the batches delivered make it possible to consider the
draws with replacement). Trials with two outcomes, success (S) with
the probability p or failure (F) with the probability g=1-p. We recog-
nize a binomial distribution with parameters n and p (see on page Er-
reur : source de la référence non trouvée for more details). We call X
the law which corresponds to the number k of successes, number of
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damaged elastics on n tests. We look for the value of k=n, from which
we would reject H, with less than one chance in a hundred to take a
wrong decision: P(X=k)<1% .

P(X>6)=1-P(X<5)~1.6% and P(X>7)~0.4%
(on a spreadsheet : LOL.BINOMIALE(k;n;p;1)). So n.=7.

*For n=50: with the binomial distribution n,=4 (we would have found a
different result with the central limit theorem n,~2.1 and n,=3).

E8 : Testing an insulating panel  Exercise on page 39

x =39.28 £ 0.49 mW/m/K with a confidence of 95% and a relative un-
certainty of 1.2% (the distribution of the population is assumed to be
normal and the sampling distribution of Student). Results in accor-
dance with expectations. According to these results the manufacturer
could announce a lower margin. According to a conventional bilateral
Student test the value announced by the constructor is well within the
confidence interval. The manufacturer indicated a mean but did not
give a standard deviation, we estimated it with the sample: 0 ~s=~0.69.
The probability o of rejecting the null hypothesis when it is true is
23% (with t=(Xx—u)Vn/6=1.29 and =TDIST(1.29,9,2) in LibreOffice), if
the compliance hypothesis were rejected there would be a 23% chance
of wrongly rejecting it, which is a far too high risk.

E9 : Coins Exercise on page 40

1) %° =2.56 < 3.84. There is no reason to question the equilib-
rium of the coins. The difference with respect to the equiprobability is
explained by the statistical fluctuations. Or by a conventional bilateral
test (prediction interval):

[(x=42/100)—(u=0.5)<t 45, (0=0.5)/\/n=100

2) XZ =~0.4 < 3.84. Likewise. Probability o =~ 20.8%, we have a one
in five chance of rejecting the assumption then what is right, one can
not reject it.

3) y° =25.6 >> 3.84 | The coin is certainly not balanced. One
chance out of two million to reject the hypothesis when it is right, we
reject it!
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E10 : Parity Exercise on page 40

Expected values 2 (470-288.5)> (107-288.5)" q
2885 2885 < 2885 2885 o O
174 174 v’~344 with ddl=2x1=2 the probability to
6 6 reject the hypothesis when it is true is much less

than one chance in 1000 (13.8 <<344 for 0.1%).
The parity is not respected.

Understanding these results would require extreme bad faith to argue
that there is no reason to believe that parity is not respected by
justifying deviations by statistical fluctuations.

E11 : Births Exercise on page 41

%~ =6.16 < 7.8. The hypothesis can not be rejected, we need more

%~ =128 >> 7.8. Hypothesis totally rejected.

E12 : Gaussian distributions in the plane and the space

Exercise on page 42
1D:
I e : N
1- X —J( X Tom e “dx=0 since the integrated function is defined

and odd on a symmetric integration interval (integral property).

X

= _'r 1 5 .1 o
x|=| |[x|—=e “dx=2| x e “dx because this time the
W= M I e

N
oo =2 a2
function is even. |x|=—==/[e *]=4/—. The distance corresponds to
V21T Ve

an absolute value, so its mean is non-zero and positive. x is the mean of
the abscissa, an algebraic quantity.

0. = o=1, because x> = |x|* and we have a normalized distribution.
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2
X

1 -7 .
e 2dx we calculate these inte-

V2T

grals numerically (with the use of a calculator, on a computer ...) and
find the results of the chapter on the Gauss distribution at o, two ¢ and
three o.

-1
2- P(x|<1)=P(-1<x<1)=
-1

2D :

1 - . ..
1- X,y)=——¢e e “=—e x,y) is a positive
plx.y)=p—e " e p(xy) p
function, like we expect for a probability.

On the whole plan we have a probability of 100%:

X B
ﬂp(x,y)dxdy:f %e ? dx J‘%e 2dy=1x1=1
0
2- ffp(x,y)dxdy:fz—lne 22mpdp=1 p(p)=pe

and f p(p) dp=—|e

2
P

I _
2]—pre P dp

+o0

p=Joplo) do=[p’e * dp=[p’(-p)e

p=0-0+2 f e dt= V2 % = \/% after an integration by parts
0

(u=0) and an integration by substitution (o=V2 ¢ and we recognize a
known integral).

2

NI

4w 7&2 — —
o =p'=[ p’plp) dp=[p’e > dp=[p*(-e *)]+2[pe * dp

We find an integral computed in 1D: 092:0—0+2>< 1 crp:\/z
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3D:

I plxyzle—se plrjearte s a=iT
C P Gt e (V2w

+o0

2- f p(r)dr=ax \/% =1 (Integral already calculated in 2D)

0

+o0

+00 7& 4
3- r=|r r)dr=x r3ezd1”=0(><2:—
[rprdr=o] T

2
r

(rrzzf rl p(r)dr:(xf rie 2dr=3 by integration by parts
0 0

so 0,=V3

= 2
V3 r

4- P(r<o,)=J pe 2 dr=0.608 and the other two also by numeri-

0
cal calculation.
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Chapitre II : Correlation and Independence

E1 : Correlations Exercise on page 88

1- a) x=(-1-1-140+0+0+1+1+1)/9=0 also x,=0 and x:=0.
o, =V, (x,—%)/(9—-1)=V6x1/8 so
0,=0,=0,=v3/2=0.87

b)
| +ill a [ | +ill i 1

by | ol ] on ol a Q 1% 3]
1 0 1 1 0 1 1 0 1
2 ] [ ey | ] -1

X1 X1 X2

¢) rn=0 . r;5=0 . r;3=-1 . X, and X, are not correlated. The same for X;
and Xs. X;and X3 are dependents and totally correlated.

2-a) x;=0 and x,=0. 0;=~1.22 apnd 0,=1.58

¢) r12=0.904 . Quantities are positively correlated.

3-a) x;=0 and x,=0. ©0,~1.73 and 0©,~1.53

c) r1»=0 . Quantities completely uncorrelated, do not forget that the
correlations sought here are linear. There is a correlation in the form
of aV.

2-b) 3-c¢)

2 H B |
1 N
ol
3 2 gify L 2 3 -3
n Ik

vl
b N B o R, N o
|
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E2 : Volumes Exercise on page 89

1-
V,=(100.1+100.0+99.9+100.0)/4 so V;=100.0 mL.

2, 2 2, 2
01:\/0.1+0 28111)+0 :J%;anﬂ; then ©0,~0.082mL

According to the central limit theorem and the distribution of the
population Gaussian: AV=t.6/Vn=3.18x0.0816/2

taa=3; 952=3.18 so AV;=0.13mL and AV,/V1=0.13/100

The pipette, withe a confidence of 95%, has a uncertainty of 0.13 mL,
so for 100 mL a percent uncertainty of 0.13%.

2- A
V'=V'-V  and
D UVI=V )V, =V,)]=2.[V,'V,]=0.1x0+0%0.1+(—0.1)x0+0x0.1=0

i i

Z[(Vli_v])(vzi_vz”
by definition r,,= =—— —
RO ADNIZAG

so rpz=0, the quantities are totally uncorrelated and
therefore independent.

A\
A

3-
V={200.1,200.1,199.9,199.9}mL so V=200 mL.

=——=-0.1mL
4-1 V3

_\/0.12+0.12+(—0.1)2+(—0.1)2_ 2
OV—

then 0,=0.115mL and AV=~0.183 mL, AV /V = 0.09%
4-
V(V,, V) then we have:

2

oV 2 2 2
AV " =AV +AV
avz)v 2 1 2

2
) AV 2+
Vz

1

and AV=v2.A V,=~0.18 Same result as in question 3-.
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E3 : Trees Exercise on page 90

We have d= Z X; (also written d=x 1+x2+...+xl,+...+xn), where the

x; are the length measures for each displacement of the stick. Ax; is the
uncertainty on each measurement x;. Here Ax;=/cm and x,=100+Icm.

What is then the uncertainty Ad ?

One would think that Ad= Z AX;, so Ad=100cm and 1m of
uncertainty per 100m measured from one tree to another. But there is a
problem, this is absolutely not what the simulation indicates below!

A black square corresponds to a hundred
measurements of the distance between
the trees

RESULTS:

k=100 000

compression ratio=100
max. frequency=8016
dm=10000cm

standard deviation=10cm

0900 10000 - 10100

(abscissa: measurement of d in ecm, ordinate: frequency of this measurement of d for 100000 measurements of d)

Rather, it indicates Ad=0.Im. Indeed a simple calculation of
probabilities shows that it is extremely unlikely to obtain for d, 99m or
101m, whereas one has a chance in two, for xi, to have 0.99m or
1.0Im. Now we want to have Ad with equal probability of Axi.

Weget 0d/0x;=1 and Ax;=Ax, whatever i=1...n, s0 Ad= Vn.Ax and

Ad=0.1m, which corresponds well to the expected result!
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E4 : The two-position method Exercise on page 90

(9f'/0D)¢=(D*+d?)/4D? and (9f'9/d)p=-d/2D, then
Af'=N[((D%+d2)/4D*)%(AD)?*+(d/2D)4(Ad)?]

so f' =464.1+3,8 mm

and Af'/f'=0.8%.

Either by a numerical calculation with a spreadsheet and macros (no
need then to perform calculations of partial derivatives):

® © @ IncertitudesLibres00032.0ds - OpenOffice.d

Fichier Edition Affichage Insertion Format Qutils Donné

(D10 B f@ 2 = [=xr2:y2)4ax)
|

Calcul d'incertitudes

TN N

g o8 §

y zas

377 sota 0B81%
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The spreadsheet 12 4 X y f
uses here 2 of the 4 2 0 -2 0 1973.71 536| 457.04
perfectly not correlated -1 -1l 0 0] 1986.86| 509.71 464.02
globally Gaussian packets 1] 0 -1 1] 1986.86 536 460.56
available: 4 1 1 1] 1986.86 562.29 456.93
4 1 2 -1] 1986.86] 562.29 456.93
00 0 0 0 2000 536 464.09
Packets 0 0 -1 -2 20000 536 464.09
8 o -1 1 -1 20000 509.71] 467.52
5 o 1 1 -1 2000 562.29 460.48
. o -1 1 2 20000 509.71| 467.52
- 0 0 0 1 20000 536 464.09
. 1 -2 0 0 2013.14| 483.43 474.26
1012 1 0 -1 0 2013.14 536 467.61
_ 1 -1 0 -1 2013.14 509.71] 471.02
X 1 2 4 0 2013.14 588.57| 460.27
2 1 0 1| 2026.29| 562.29 467.56
r12=0 r13=0
2 L ] [ ] 2
] 1l ] ] 1-
~ . ] ol ] ® ] ol | n
2 1 0 1 2 1 0 1 2
] EY | [ ] ] am ]
2 n -2
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r1i4=0 r23=0

2l 2
[ ] 10 ] ] 1-
~n ] ol B © W n ol
2 1 0 1 2 2 1 0
] | u |
2l 2
1 2
r24=0 r34=0
L] 2 2
1l L | ] |
<~ ® n | L ] ] ol
2 1 0 1 2 2 1 0
[ ] 1 | 1l
2l ] 2
2 3
ES : Refractive Index Exercise on page 90
: : sin (i,)
According the Snell's law for the refraction: n,=n, sin (i,)
2
so m=~1.462
Vlz(i], lz) and
2 2
on . on .
Anl=—2| Ai’+|=2| A,
oiy |; o, |;
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(The variation with respect to the index #; is not included because n; is
assumed to be known with a great accuracy)

on

5 .. —cos(i,)
—=| =n,sin(i,) ———==
aiz 1 (1) .

i sin®(i,

on, n,

So |31,

:m COS(ll) and

i
2

27172

sin(30°)cos(20°) 21
sin’(20°) 180

sin(20°) 180

° 2
hence An,= w I )—i—

(the angles are placed in their natural unit, the radians, dimensionless
quantity: st rad = 180°)

Finally An,=0.1470 with 95% confidence
then n,=1.46+0.15 and An;/n,=10%.

With the spreadsheet: n,=1.46+0.16 and Anz/n;=11%.The numerical
method is approximate but we verify that we have not made a
calculation error.

Moreover, with a goniometer we can make measurements of angles
much more accurate to a few minutes of arc (one arc minute = 1' =
1°/60).

E6 : Cauchy's equation Exercise on page 90
1-
on | on\’
An’= AD +[Z—| AA
"lop, .0 oA,
. on | _cos[(A+D,)/2]
with \5p |7 2sin(a2)  2d
on| _cos[(A+D,)/2]sin(A/2)=sin[(A+D,)/2]cos(A/2)
0Alp, 2sin’(A/2)
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on
0A

on
oD

~

=5 and

with A=60°~=D,

m|A D,

then An=0.00065 and Ankn=0.04%
(we find the same result with a numerical calculation)

2-

With error bars, An=0.00065 and A(1/A%)=2AM)\° with AA=0.05nm,
we find A=1.67877+0.00182; AA/A=0.109%;

B=(1.285 + 0.055)x10™"*m? and AB/B=4.26%

n as a function of 1/A*(1/m? :

173

173

1.72

1.72

171
2.60E+012 2.80E+012 3.00E+012 3.20E+012 3.40E+012 3.60E+012 3.80E+012 4.00E+012

A simple regression give r=0.99995 ...

(If we miss the error bars A=1.67877£0.00075; AA/A=0.044%;
B=(1.285 + 0.022)x10"* m? et AB/B=1.75%)

3- With a simple regression:

s 1=0.99947... for n(1/A)
s 1=0.99995... for n(1/.?)
o 1=0.99982... for n(1/)
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An expression in //4 2 is therefore better,
But what value of o allows to optimize the regression?

To determine this value we plot y=In(n—A)=xx+In(B) with
x=In(\) . o and In(B) will be obtained with their uncertainties and
A will be chosen to maximize r.

The results are as follows 7,.=-0.99997024 pour A=1.6843744
and we find: a= - 2.306 £ 0.033 . Then with the error bars: a= - 2.3
+ 0.1 . Conclusion o= - 2 is not in the interval, the model with /A %is
not validated.

That said, it works properly. The difference can be explained
simply because the theory of light-matter interaction used to find the
Cauchy's equation give a more complicated function. Here we consider
a Taylor expansion of this function and actually there are more terms:

B C
n=A +P+F . A more advanced study could verify this by including

the new 1/4 term.

We should also check our experimental uncertainties, it is
possible that we have neglected or underestimated sources of
uncertainty (for example by tripling the angular uncertainties up to 6"
0=-23%03..).

E7 : Wall Exercise on page 92
S 1-
= koG __ 04mKm
: . " h,S 0.045Wx72m’
[ ,
Te‘kz'éo(/ /Stravy . “»\‘\: A&(, SO Rp:0.123K/W
C yd -
. - 2 2 2
? AR, :(Aep)+m\p
: - R, € A,
< >
< e &>
2, dp & and AR,/R,=0.103
A do
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R,=0.123+0.013K/W

2- R,=0.0069+0.0010K/W

3- The resistances are in series: R=R,+R.

et AR=V(AR,’+(AR,’ and R=0.130£0.015K/W

AT 12
. p=——=—""—=92.
4 R 0.130 923w

(A(I)/(I))EZ(A (AT)/A T)2+(A R/R)2 AT :TintérieuriTextérieur

then A(AT)=v2Xx0.5°C , A®/® = 12.9% et
80W<®<104.3W hence a minimum heating power:

Puin=105 W
ES : Insulation et Inertia Exercise on page 93
1 1 AiS;
1- In parallel: R_eq_z E)_ Z, e—i

or wit the thermal conductances G=I/R: G,= Z G,

then in the present case:

S S S S
1_ s t m h _E_’_ﬁ_’_&_‘rg

R (e/\,) (e/\,) (e, /N,) (e/N,) 4 8 4 1
concerning the uncertainties:

AG:./ZAGiZ : AGI.:SI.% , AG=2471W/K
and AR=R’AG=1.26mK/W

then R=226+13mK/W and AR/R =56%
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_AT_ 12
R 226x107°
and a minimum heating power:

2- =531W +8.1% (As in the exercise Wall)

Puin=575 W

We necessarily have
an horizontal
asymptote T=Te:
the temperature can
not drop
spontaneously below
Text.

If the curve was linear the temperature would tend towards -0o0 with
time.

—th ]_
T—b=ae ™ and In(T-p)=Ina-7t>
we find b=T..,= 5.7 °C (maximum correlation coefficient r),

Then we do a regression on a spreadsheet with y=In(T —b) and
Xx=t (on page 2 in the file IncertitudesLibres):

y=In(T-Text)
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slope = -1/t =-0.156%+ 0.0157 h”'
y-intercept = In a = In (Tin-Tex)= 2.474 + 0.0949
I'max = -0.9937170474 (the best alignment of the points)

At _A(l/T) _
we have: ——= (/) and Ax=x.A(lnx)

Then : T =6 h 25 min within 10.1% and Ti,=17.5%1.2 °C.

4-
a) energy outflux during dt = thermal energy lost during dt

(t)

T(6)-T
o ddt=2L =2 e 3 _cgr
R R

and i—{ﬁ-%T:%Tm with T=RC

The general solution has been given in question 3-.
b) C=7/R and (AC/C)=(Av/t)+(AR/R)

and C=1034+119 kJ/K
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E9 : Yield

1-

Exercise on page 94

On a spreadsheet (regression line on the graph):

(xi-xm) (xi-xm)2 yim (yiyim@Z - X2 (xixm)? (yiym)p2  (xixm)
*yiym) *yiym)
100 5271.43 90000 40.79  0.05 10000 90000 308.76 5271.4
200 2914.29 40000 46.71  7.37 40000 40000 212.33 2914.3
300 557.14 10000 52.64  0.13 90000 10000 31.04 557.14
400 0 0 5857 19.61 160000 0 1961 0
500 742.86 10000 645 225 250000 10000 55.18 742.86
600 1285.71 40000 70.43 29.47 360000 40000 41.33 1285.7
700 5828.57 90000 76.36 2.7 490000 90000 377.47 5828.6
xm=ym= Cov(x,y) = Var(x) = Sylx= sx2=  Sx= Sy= SXy=
400 58.57 16600 280000 3.51 1400000 216.02 132 2766.7
da=0017 | dalja] =29% dy = r=0.9701
db=8 dbl]b| =22% 9.021 r- lingar and algebraic
correlation coefiicient.
a= 0059 +ou- 0.017 sa= 0.00663
b= 3 +ou- 8 sh= 2.96579 Criical linear
0.042 <ac< 0.076 correlation coeficient:
21 <b< 42 rc =0.669
Linear correlation test: R=0.941

if |r|<rc then quantities not correlated
if |r[>rc then quantities correlated
Here the quantities are correlated.

R: coeficient of determination (R=r"2).
94.1% of the variation of v is
explained with that one of x
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Yield as a function of the amount of fertilizer:

90

80

70

60

50

40

=(0.059 £ 0.017)x + (35 * 8)

30
0 100 200

2- The yield would then be
of 67 Q/ha + 4 Q/ha with a
confidence of 95 pour cent.

3- The yield would then be
of 35 Q/ha *+ 8 Q/ha with a
confidence of 95 pour cent
(y-intercept).

4- The probability is of 95%
(20 prediction interval).

400 500 600

For xo=550

Estimate of the mean of yo:
63 <yo< 72

yom= 67

dyom= 4

dyom/|yom|= 6%
For xo=0

Estimate of the mean of yo:
27 <yo< 42

yom= 35

dyom= 8

dyom/|yom|= 22%
For xo=250

Prediction for yo:
40 <yo< 60

yom= 50
dyom= 10
dyom/|yom|= 20%
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E10: Study of a battery Exercise on page 95

To characterize an electrical component we can plot U(I) with the
following circuit:

In this case we

study a battery. djustable
By varying R the Resistor
circuit works on

different points of &

the voltage-current

characteristics ~ of

our battery. Ammeter

There are two possible circuits depending on the positions of the
ammeter and the voltmeter (R,—0 and Ry—c0).

1- The spreadsheet give: then:
E=4.7327%0.0005 V
a= -17.85 t 0.92 accuracy: 0.010 %
b= 47327 t 0.00049 r=17.85£0.92 Q
r=09980 Confidence:  95% accuracy: 5.16 %

U(V) as a function of I(A):

4.7310

4.7290

4.7270

4.7250

4.7230

4.7210

4.7190

4.7170

4.7150
0.00005 0.00025 0.00045 0.00065 0.00085
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I(A)  dI(A) Uv) duy() poids wi  wi/S
0.000093| 2.16E-07 4.731] 0.00537 | 3.47E+04 10%
0.000115| 2.61E-07 4.731] 0.00537 | 3.47E+04 10%
0.000153| 3.35E-07 4.730, 0.00537 | 3.47E+04 10%
0.000235| 7.70E-07 4.728) 0.00536 | 3.48E+04 10%
0.000469, 1.24E-06 4.724| 0.00536 | 3.48E+04 10%
0.000520 1.34E-06 4.724| 0.00536 | 3.48E+04 10%
0.000584| 1.47E-06 4.722| 0.00536 | 3.48E+04 10%
0.000666| 1.63E-06 4.721) 0.00536 | 3.48E+04 10%
0.000775 1.85E-06 4.719| 0.00536 | 3.48E+04 10%
0.000926| 2.15E-06 4.716) 0.00536 | 3.48E+04 10%

S=
3.48E+05
da =6.09 da/lal = 34.1% sa=6.09
db =0.00324 db/|b| = 0.0685% sb =0.00324
a= -17.85 + 6.1
b= 4.7327 + 0.0032

then: E = 4.7327 £ 0.0032 V , accuracy: 0.07 %
andr = 17.85 £ 6.1 Q , accuracy: 34 %

U(V) as a function of I(A):

4.735
4.730 | =

4,725 T
4.720 S

S~ -
~<.

4.715 S

4.710
0.00010.00020.00030.00040.00050.00060.00070.00080.00090.0010
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The results in question 2- are the good ones, because those in 1- do not
take into account important sources of uncertainty.

E11: Thin lens formula Exercise on page 95
Positive Image
Object Lens
{,Qm B O 7 _
f Axis
] A 3
Sﬂ\l\\\LLgk\Llﬁfvgr‘_‘T(Lkll'/“ll
. . Screen
Graduated Optical Rail

In the context of the small angle approximation we obtain the thin lens
formula:

11 _ 1

0A OA f , f':image focal length.
Here the object and the image are real and according to the sign
convention chosen OA<0 and OA'>0 . To have positive quantities
we set: OA=—0OA and OA=0A".

The fastest method for measuring the focal length of a converging lens
is the autocollimation method. Then we have the Bessel method, more
precise but longer to implement. The advantage with the other method
of this exercise, certainly long, is that we do not work with a single
measure but with n measures. The larger the number is, the more
accurate is the result.

AOA contains geometric uncertainties (length measurements) and

modeling uncertainties (lens thick, small angles approximate). AOA'

contains in addition the optical uncertainties (focusing latitudes):
AOA'=NV(AOA ' 1o +AOA ' 1moa®+AOA %)
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The relationship between OA and OA' is hyperbolic, then we consider
x=1/OA and y=1/OA'. We have then a linear relationship y=ax+b
where the slope a as to be equal to -1 and the y-intercept b to 1/f'.
Ax=A(1/0A)=AOA/OA?, as well for Ay.

With a spreadsheet we obtain:

(here the file www.incertitudes.fr/livre/TPlentille.ods)

a= -1.0210.09 and b=0.008210.0004 so f' = 122 + 6 mm (consistent
with the manufacturer statement f'=125 mm).

a= -1 is correctly in the interval, we also verify the validity of the linear
relationship between 1/0OA and 1/OA'. To further clarify the validity of
the thin lens formula, we should also show that this linear relation is the
one which gives the best correlation.

y as a function of x:

0.0070

0.0060 N >

0.0050 SO

0.0040 ™

0.0030 2

0.0020 SN

0.0010
0.0015 0.0025 0.0035 0.0045 0.0055 0.0065
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n=8 a estim.=-1.0210 a=

X dx y dy poids wi
0.00157 0.0000124 0.00667 0.000667 2249189
0.00189 0.0000178 0.00625 0.000664 2265985
0.00202 0.0000203 0.00610 0.000558 3210643
0.00227 0.0000258 0.00581 0.000608 2696211
0.00286 0.0000408 0.00524 0.000548 3308045
0.00357 0.0000638 0.00467 0.000546 3308566
0.00476 0.0001134 0.00342 0.000328 8248034
0.00667 0.0002222 0.00137 0.000191 11349080

S=
36635752
da =0.0871 dalla] = 8.5%
db = 0.000408 db/|b| = 5.0%
a= -1.021 +ou- 0.087
b= 0.00821 +ou- 0.00041

111 <a< -0.93

f=1/b= 122
df=d(L/b)= 6
dfIf=d(Lb)|Lb|= 5%

n
nxX’—2x Y x+nx’=nx’-2xnx+nx’=n(x’—%x’
i=1

E13:

| ‘f —
1 x’ “Z(X—X) +nx* ‘Jn(xz—)’(z)—i-nfcz

S,=S

r\j;—FZ(x,.—X)z:Sr\J‘ ny (x,—x) —er ny (x,—x)
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S, =S, =s,
then b \/”Z (x,-*)?)z

El4:

P — and Sb:Sf\/ _Z X’ X

a Z(x,—j()z SO S$,=S,
i

i nZ(x,.—f()2 n

Which brings us immediately to the desired result.

E15 : Asymptotes Exercise on page 97
For the extreme line of greater slope:
Ay,.=y,.—y,=(a,x,+b)—(ax,+b)=Aa.x,—Ab

limAy,,=lim (Aa.x,—Ab)=Aa.x,

X, X, 0

For the confidence curve:

so lim Ay =t, 58 0+%xo:Aa.xo
Xo—0 Z(Xl_j()

For the prediction curve we arrive at the same conclusion.
As we experimentally guessed all the asymptotes meet when we tend to
infinity.

E16 : Confidence Interval and Prediction Interval for Linear
Regression With error bars Exercise on page 97
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Error bars regression: Ad = A

and A—( Z w; } (x’~%") hence by analogy we have:

so Ay,= \/ 1+ (X"_:) for the confidence,
\n Z W, —X
(x,—x)’ -
and Ay = 1+n+ for the prediction,

\/nZwi xX=x

3- By the same calculation as in simple regression
limAy,.=Aa.x,

X, %0

—\2
X—X
1Jr( ) 1

1
A =
.Ymnf \/nzWi X —X \/nzw

2
limAy,, = ! 171 X, = ! \(Zwi)x
o conf \/nz Wi X2—Y2 0 \/nz Wi A o

Zw

limAy,, —Aax
Yo =7 n

X, =00

By analogy we have to take n=1 into the error bars regression formu-
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las. In fact we had to expect a factor of difference, indeed the w;

weights are defined by a factor. For example, we could have taken
2
= 1/20 5 . Also in simple regression the number of
(Ayla)+(Ax)

i

points is clearly defined, while with the error bars some points count
more than others, n=1 means that all the points correspond to 100% of
the data. To find the formulas of the statement we replace n by 1.

E17 Others expressions Exercise on page 98
j(:Z:wixi 5 Z:wixi2 Xy= ZW | A ‘2:;_72
Z Wi Z Wi Z Wi (z WiJ
_ Zwi Zwixiyi - Zwixi ZWiYi_T}/—Y
= X =24

y
x'—x

b = ZW,-)’,- ZW,-X,-Z—ZW ZW _7X—5(X7y
B A - ?7)?2

Aa = ZW L
)

Ab = W\/iw\/ X

*X

X
Simple regression: d="3 _,  (same formulas with the bars)
X=X

— 2 -
and y=ax-+b imply b= % (same formula)
X=X

t,,s, 1
Aa=t, ,s 1 =2
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1
This formulas are similar. Like n~1 we have \/ﬂ ~l, S g0

1
\/W for the error bars regression, it is equivalent to the residuals

uncertainty in simple regression.

E18 : Least Squares Method  Exercise on page 99

2_ 2
O Simple regression: 2. d'= Z (yi—ax=b)

0(2.d) < .0(y,—ax,—b)
ob _z 2

b (yi—ax,—b) :_22 i—ax;—b

then 2. (y—ax—b)=0 , X, y.—a). x,—nb=0
and finally by dividing by n: y=a X+b

0(2.d) < ,0(y,—ax,—b)
oa _Z 2

da (yi_axi_b):_zlzXi(yi_axi_b)

then Z(yl.—ax,.—b)xl:o , Zy,.x,.—az xiz—bz x,=0

and we divide by n: y—a;z—bfzo

i

><\

xy-xy
2

so Xxy—ax'—(y—ax)x=0 and 9= .

>< \

@ Error bars regression: S 2=Z w(y,—ax,— b)z

S%)
L =-2 z w;(y.—ax,—b) because w; does not depend on b.

And we obtain also y=aXx+b

ow, 2aA x”

ﬁ:i 2 12 2|7 za zXl 22:_2&Axizwi2

oa oa\Ay’+a’Ax, (Ay’+ad° A x®)

o(),s?
%:_202Axizwiz(yi_axi_b)z+z2Wi(_xi)(-yi_axi_b)
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but AXx; is small compared to x; and y;, so we can neglect the first term

and to keep only the second one, and thus find the same result as before
in simple regression.

Method 1:
L =Xy L (xR
2 -2 2 2
X=X n(x—x°)
(Xi_j()z
2. Via)=2 pivViy)= 2 S0, =

Because the variables y; are independent and are assumed to have the
same variance.

b_)_/x —-XXy z(yi?_)?xiyi)_
- 2 2

3- = — =
X'—x n(x’—x)
Y —%x) (2P 2.2, 22
V(b):Z< ;)Z(rfzn[‘x ) 2X°X —:;( X 2
|2 (x| > (x—x)]
Method 2:
_zxi}’i_yzyz'
a= 3 2 or
n(x—x")
0 ooy +ty ot
Zy,: $2 Y y”):0+...+1+...+0:1
ayj ayj
and az:X"yi:a(lel—i_"’—i_>(")}"—i_"'—i_X”y”)ZO—i-...—i-x--i-...+0=x.
ayj ayj j j
- 2
da X, —X ) X —X 5
then — =——55 d s, = — s, =
Moy, ax-x) 2z n(x’-x*)|

Analogous procedure for b.
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Matrix approach: the system of equation p201 is equivalent to

[ y—b—ax=0 |1 X b y
. H= — A= =Y
| xy—bx—ax’=0 x x| al #¢ By
2 —
HA=B, A=H'B, 7r'=—1 [ ¥ “X|and ¢’=(H "), 0
X —x \7X

We have a matrix of non-zero determinant, and we have applied the in-
version formula for a 2x2 matrix (we verify that HH'=H'H=I). We
then quickly have the formulas sought.

E19 Expectation of a  Exercise on page 99

:E(Z piyi):Z piE(.Yi):Z pi(xx;+B)
:O(Z pixi+BZ Di Z p,:ﬁz (x,—x)=0

(x,—%)
ZP: i ZZ

then E(a)=«

1
Z (x,—x)*

><\

E20 Standard Deviations proportional toy Exercise on page 100

fe DWW YD WX DL WY

) 1
Wlth Wi: 2 2 .

1-
Dow X wixi = Xowx K'yi
) _u Oa _u'v—v'u
S oy, v
—X; —2x; ¢« 1 x —1
u:———— _—l —_— —_—
dy; Z Z y: Zy Zyzyi
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V= ov -—ZZS 2: 1 - 22: X —2X;
0y, Yj Y j vy j
We thus have the calculation of the partial derivative, we
add them to the square according to all the values of j on a
spreadsheet in order to obtain s.:

45

40

35

30

25

20

o
~
w
IS
o
S
~
©

y=5x+5

45
40
35
30
25

20

0 1 2 3 4 5 6 7 8

y=5.34x+3.46
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Data set 1 for k=0.1: s,~0.422

Data set 2 for k=0.1: s,~0.427

We find exactly the same results with small variations
method:

j=1 | j=2 | j=3 | j=4 | j=5 | j=6 | j=7

;yaj -0.2237 | -0.0203 | 0.0331 | 0.0496 | 0.0542 | 0.0543 | 0.0528
and §,~0.422

=1 | j=2 | j=3 | j=4 | j=5 | j=6 | j=7

jyaj -0.2232 | -0.0016 | 0.0514 | 0.0343 | 0.0667 | 0.0410 | 0.0611

and s,~0.427

We had with the classic method p67:
Data set 1 for k=0.1: s,~0.422
Data set 2 for k=0.1: s,~0.399

Again the method with the propagation formula and more re-
alistic than the classical method.

E21 Interpretation of w; Exercise on page 100

1- We want to find the straight line which passes at best ! 1
through all the rectangles of uncertainties, and if possible (;:"_”_;{ j
closer to their center. If the slope of the line is small, the L.l
line is close to the horizontal, a=~0 and only Ay, will act '

to adjust the line and w,=~ . For example, a s

(A Yy i)z
rectangle such as Axi=Ay; will determine as much the
line as another one for which Ax,=0. On the contrary, if __ |
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the line is vertical, a=oco and only Ax; will act to adjust the line and
1

Y= aax )

In the intermediate
case where a=1, Ay;
and Ax; have the
same  importance,
which is satisfied by

the formula w=—————.
Tay ) Ax)

E22 Decomposition into Gaussians Exercise on page 101

We consider a decomposition of the form:
1

’x—ag)z 7L(x—as)z
f(x)=a,e 2 "+a,e %

We have six parameters:

x—a,

ﬂ:e_g(a;)z L of _a

— etc.
—lx—a,)e ,
da, da, a;
We start with the following estimated parameters:
a, a, a, a, a, a,
58 59.99 0.012 10 60.03 0.012

If you start with any parameters, the iteration may be divergent. You
first see if the set of estimated parameters give a graphically correct
result and, above all, you try manually, groping, to minimize S*.

We obtain the following expressions for the first iteration:
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2.13 2.36 508 0.132 -184 361
236 245572 7176 107 -121329 202215
508 7176 354716 210  -202215 303007
0.132 107 210 2.13 -4.06 876
-184 121320 202215 4.06 730001 -21333
361 202215 303007 876 21333 1054447

0.933 -0.0128
397 -0.0009
959 -1 -0.0001

0.029 -0.2927

-2767 -0.0039
520 0.0008

We got the variations of the parameters then we obtain a new set of
parameters for the second iteration. We iterate as much as necessary
for convergence and stability of the quantities:

a1 a2 a3 a4 aﬁ aS SZ

t.0 58 59.99  0.012 10 60.03  0.012 13.2711
It.1 5787 599891 001194 9707 60.0261 0.01285 2.9499
.2 5784 599892 001210 10283 60.0261 0.01197 2.3998
.3 5764 599890 001191 10271 60.0260 0.01218 2.3848
lt.4 5762 59.9891 001200 10279 60.0260 0.01212 2.3839
It.5 5762 599890 001197 10276 60.0260 0.01214 2.3838
It.6 5762 59.9890 001198 10277 60.0260 0.01214 2.3838

Hence the following final parameters and inverse matrix:

a a a a

1 2 3 4 5 6
5.76 59.989 0.0120 10.28 60.026 0.0121
H'=" 011200386 00001746 000014445 072254732 000002639 -0.00062087

0.00011583  0.00000361  0.00000392  0.00002639  0.00000316  -0.00000182
.00006533  -0.00000371  -0.00000353  -0.00062087 -0.00000182  0.00000317

a a
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We can thus determine the standard deviations on the parameters:

“‘Z(yl’_ft)z -
s:\/?:o.sm et s,°=(H ')ys,’ dou

r

031 032 033 034 035 Uas

0.77 0.003 0.003 0.76 0.002 0.0016

12

10

0
59.960 59.980 60.000 60.020 60.040 60.060

A nail corresponds to an area of 0.01x1, so for a unit area: u.a. = 100

nails.
2

dx=\2mad

x—B

with an integration by substitution: X '= 5

+00 _I(X*B
2078

A:fae

—00
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For the left peak: N,=v2ma,a,=17.33+4.91
For the right peak: N,=+v2ma,a,=31.18+4.72

Intotal: N=N;+N,=48.5+6.8 (consistent with 48 nails)
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Chapter 111 : Probability Distributions

E1: Binomial Distribution  Exercise on page 122

Positive probabilities. Moreover, according to the binomial formula:
> P(x=k)=2|"
k=0 k=0 \K

Probabilities between 0 and 1.

p“q""=(p+q)'=

n n I
Expectation: E(X)ZZ kP(X:k):Z kni kqnik
= & (k)P
- n(n—1)! k=1 n—1—k+1

then E(X)Zg( pp

= (n—1—k+1)!(k—1)!
We extract from the sum the quantities independent of k:
n 1) k=1 _n—1-k+1
=n
pzn 1—k+1)!(k— l)p q

We perform the 1ndex substitution j=k-1I:
j=n—-1

j n—-1-j__ n—1__
nplZ:,) e 1 ] ],pq =np(p+q)"'=np

Variance:

n! k n—k
kPX k= k 1 ki
,;) Z J* Py

then E(XZ) impkqn_k+E(X) and

; n - k+2(’)1 (;) 2) pzpkfzqnfszw_'_E(X)
)

E(X*)=n(n—1)p°*x1+E(X)=n(n—1)p*+np=n’p>—np°+np
and V(X)=E(X*)—E(X)’=np(1-p)=npq
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E2: Sum of binomial distributions FExercise on page 122

ZP N[Y =k—i]) ZP )Py (Y=k—1i)
If the random variables are independent:
Z P(X=i)P(Y=k—i)

for the binomial distributions B, (r,,p) and By(n,,p}

P(z:k)=nf(“}

i=0 \ 1

i_n—i

Hoon
P (k—i

n
k—i
And finally using the Vandermonde identity for the binomial

coeflicients we get:

k—i _n,—k+i

p

n,+n,

2

i=0

n, k _n,+n,—k

then P(Z=k)= P'q

i

n,+n,

k _n+n,—

P(Z: k): P q $0 a B,(n,+ny,p).

E3: Geometric distribution  Exercise on page 122

Positive probabilities.
k

> P(x=k)=Y ¢ p=plim—T =1
= 1 k>0 ]__q

Probabilities between O and 1.

Expectation: ZkP(XZk)szkC[kil:P L zzl
k=1 (1_CI) p

Variance: E(XZ)ZZ:k2 X= kZpZ (k—1)+k]q
k=1 1
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[o's)

and E(X*)=pq) k(k—1)q *+E(X)=pq—"—+—
2 (1—61) )%
then V( ) 2? 1 — 72q+€_1=%
pbp p p p

Sum of independent geometric random variables of parameter p:

ZP P(Y=k—i) Zq pqd " 'p

so P(Z=k)=(k—-1)q"?p’

Probability of having a second success in rank k. The first success has
k-1 possibilities from position 7 to k-1.

E4: Firsts successes  Exercise on page 122
1- P(X=5) =(1/2)*.1/2 = 1/32 = 3%. Px-3(X=8) =P(X=8-3) =P(X=5).

2- E(X)=1/p=6, on average after six throws

6
P(X<6) Zq p= pzq pl q—l—q6:66%

1-

ES: Poisson distribution  Exercise on page 123

Positive probabilities.

o0 o0 o0 k

Z Zk_ —efxz }‘—,:e*eKZI
k=0 o k! o k!
(definition of the exponential function in terms of series)

Probabilities between 0 and 1.

Expectation:
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Variance E(X2):Z P(Xx= kzz (k—1)+k] }‘ -
k=0 1
© k
E(Xx*)= A e+ E(X +k ISEYN
=T g = L

then V(X)=k2+7\—7\2:7x

Sum of independent Poisson distributions with parameters A; and A:

koA i k—i
P(X=i)P(Y=k—i —Le 2™
Z )= Z:‘, il (k—i)!
k k k —h=h,
A - k in k—i|€
d P(Z=k)=) —"—e = M A
nd PLZ=KI= 2 T, Z(z) Y
NS o
With the binomial formula: P(Z = k): (11(7,2) (-422)
The expression obtained corresponds to a
Poisson distribution with parameter A;+\,.
E6: Uniform distribution  Exercise on page 123
Tx2f f % dx_; b'—a’_1(b—a)(b*+ab+d’)
e b— 3 b—a 3 b—a

then V(X):E(X2)_E(X)2:%(b2+ab+az)_(a-zlb)z
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E7: Exponential distribution Exercise on page 123

Positive density of probability.

_[ f(t)dtZI e *'dt (improper integral)
Lo 0

A
IA=f XefMdIZ[—efh]’g:l—efm then lim I,=1
0 A+

+o0

Expectation: E(T):f tf(t)dth Ate Mdt
0

—0

At - g oA 1 5a 1
f)»te dt= +f NG +X

(integration by parts)

and E(T)=lim JA:%

A=+

+00 +00
Variance: E(T?%)= f t2f(t)dt:_f AMe Mt
S )
After two successive integrations by parts:

A
K,=[afe™dt=[—e ™ ]+2 [ te ™ dt
0

then E(T°)=lim K, %et V(T):i2

A+ 7\,

Sum of independent exponential distributions of the same parameter:

ffx (x—y)dy

e if x<0 then fz(x):O

* if x>0 then f,(x)=[ e ne " dy

0
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and fz(x)ZKze_MJ' dy=A’xe”™, It is not an exponential

distribution, it is a Gamma distribution with parameters 2 and 1/\.

E8: Sum of Gaussians  Exercise on page 123

+00 72 _X_)Z
ffx fy X— y i,[oe 2 dy
to _Lpey (xmy) S VA
fZ(X):ﬁ__[OeZU( y)]dy:ieétl[oe(y z)dy

3 2

1
1 e—*;_ 12

2V V2nd2’

distribution. Distribution centered and as expected with a standard

. . 2_ 2 2_ _
deviation \/E,mdeed 0, =0,+0, =1+1=2

‘ x

N

V

then f z( ) we recognize a normal

1 = - ( ) X )’ﬁuz)
O, o,
2- fz(x)Z—J. e’ e’ dy We then have a
27 o
somewhat long calculation:
7Ozz‘jyfuﬂz"'of“xfy*uz:‘z
= f e 2oros dy=... which, once conducted,

does indeed provide a normal distribution with mean w,=u;+w, and

variance O ZZ =0 12 + 022

E9: First Students Exercise on page 123

fl(x):%ilr(l) then f(x)=2——
r{ 2 L+x
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1 1 2 1
also f )ZZ—ﬁ T fa(X)Z@—n 2
1+ 1+=
o
and f,(x)=—— =
4 2\5” D UR 2\5
Van r(2)| 1+X ] 1n1+X P
4 4
3 1
Y f4(X)—§ 2\5
1+5 P
4

E10: Student's t-distribution Exercise on page 124
Positive density of probability.

We want to show that k=1, T fo(x)dx=1.

We assume that the integrals ar; éonvergent.

dx=vkdu then with the integration by substitution and the
symmetry of the function:

+o0 k+1 k+1

1= (e 2 VERdu=2VE [ (140 2 du

—0

Let J, be the integral which verify: I, =2 VkJ K-

We first consider the case where Kk is even: k=2n

+o0 —n—l +o0
J,= (1+u2] *du= ##du
0 ?‘: “(‘: Vi+u® (1+u2)n
1 1+
J,= —du
but _{ \/1+u2 (1+u2,] then
=1 u o1 U

J.=J

e d =
S {\/1+—112[1+u2)n et Ko {m[lﬂﬂndu
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Integration by parts:

J _
Kn:O+ 1 Jn—1: — and Jn:u‘jnfl
1 2n—1 2n-1
2ln——
2
then Jn:2n—2 MJH_ZZ...:ZH_Z 2n—4mgj1
2n—12n-3 2n—-12n-3 3
For J,: J 1:f ;mdu we do an integration by substitution
o (140
— 23 — : 't 1
u=shx *so du=chxdx give JI:f—de
0 ch™ x

and J,=[thx]*r=1

n—-1 n-2 1 varl(n)

For Jn: J = —— =
" n—1/2n-3/2"73/2 2I'(n+1/2)
VAT %)
then Jk:ﬁ
or| X2
2
If we consider the case where Kk is odd we obtain the same expression.
Eventually:
3 r k;l r k;l =T g)
ffk(x)dx:\/l_ P Ik:\/l_ P 2k . =1
= kn L E) kn r(E) T %

23 shx : hyperbolic sine with shx= €€ , chx : hyperbolic
cosine with chx=5"5— and thx= shx .
2 chx
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E11: Variance of Student's t-distribution Exercise on page 124

V(X):E(Xz)—E(X)ZZE(XZ)::]Zfok(x)dx

This integral is convergent if k=3 .

) r k-;l » 2 r|k+1 k+1 .
V(X)= X dx= u -
mrkiu"—”? ‘/HF— J‘(1+ )k1
2 k 2
Firstif k is even, with the results of the previous exercise, k=2n:
ok I'i—— k+1 oo 5 4 r n+l
_ u _4n
r =1 ° (1+u2) 2
2
J. val(n—1)
We had found: K,= =
2n—1 2(2n—-1)T'(n—1/2)
val(n)(n—1/2) Vil (n)

" 2(2n-1)(n—-1)T(n+1/2)  4(n—1)T'(n+1/2)

n _ ki2 _ k
n-1 k/2—1 k-2

then: V(X):

For k odd we obtain the same expression.

E12: Sum of Student's t-distributions Exercise on page 124

e For k=1:
1 1 1
x—y)dy=— d
ff )fi(x—y)dy= 2f1+y1+(x 7Y
Then using a software of symbolic calculation we find:
1 1
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In this case we find the general form of a Student for which k=1 .

e For k=3
5v3 1+x*/60
. x—y)dy=
ff3 £\ X J‘fs f3 Y) y 12?5(1+x2/12)3

We do not recognize the general form of a Student.

e For k=5:
40045 x*+120 x*+8400
ffg*fs(x) = 2 5
3n (x*+20)

We do not recognize the general form of a Student. The Kurtosis
coefficient 8, is 6 whereas the degree of the polynomial in the
denominator minus the degree of the polynomial in the numerator is 6.
This data does not correspond to a Student. A table presented below
summarizes the different properties of the first Students.

e For k=7 :
foo(x) = 109767 5x°+1092x*+112112 x*+9417408
ff; 253.c (X2+28)7

We do not recognize the general form of a Student. We can again study
the form factors: the kurtosis 3, is 4, (3, is 50 whereas the degree of
the polynomial in the denominator minus that of the numerator is 8.
This data does not correspond to a Student.
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kjd| v 8 B fi(x) f(0)
12 - - - 11 ~0.318
n1+x2
2|3 - - - 2\3 | ~0.354
L1/ 14252
242 2
3|4 3 - - ) 22| ~0.366
—=—1/ 1+x—)
V3n 3
415 2 - - 3 25 | 0375
S 1+=F
8 4
5/6/| 53 9 - 8 X2 1P| =0.380
_1/]1+%
~1.67 3vsn |5
6|7/ 312 6 - 2\7 | ~0.383
=15 A5 gl X
166 6
7181 s 5 125 16 X2 =0.385
—1/|1+=
=14 5V7x 7
8|9 43 92 | 675 35 212 | =0-387
~ = —=2_q/l1+%
1.33 4.5 64 3 g
9 10| 97 21/5 | 49 128 2P
~129 | =42 TR )
10|11 5/4 4
=1.25
112 1119 | 217
=122 | =39
12113 6/5 15/4
=12 | =375
oo 1 3 15 127 e*? | =0.399
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E13: Chi-squared distribution Exercise on page 124

fil=ps—=e?  filx)=ge"

E14: Product of distributions Exercise on page 124

=InZ=InX+InY =U + V. First we are looking for the
probability density of U and V, after we use a convolution to determine
the distribution of the sum, and eventually we find the Z = e" density.

0 x<O0
2.a. U and V densities: fu,v(x): e* 0<x<In?
0 x=In2

W density: fW fo fVX y)dy

0 x<0
B xe” 0<x<In2
Aft ion: X)=
er calculation fw( ) (21n2—X)eX In2<x<2In2
0 x=2In2

1
Z density: f7(x) = fw(Inx) if x>0 and zero otherwise.

0 x<1
After calculation: [z (X): Inx Lex=2
: 2In2—Inx 2<x<4

0 x=4

2. b. File for the simulation on a spreadsheet:
www.incertitudes.fr/livre/ProduitXY.ods
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http://www.incertitudes.fr/livre/ProduitXY.ods

f2(x)

Density Distribution Z=XY Simulation with n=10,000
0.8

0.7
0.6 -
0.5 - =

0.4 —
0.3 = -

0.1 —

0.0 =
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

E15: Sum of exponentials Exercise on page 125

0 if x=<0
1. Exponential distribution: fx (x ) =

re N if x>0

+00

Sum of exponential distributions: fsz(x): f fx, (y) sz(x —y)dy

Non-zero integral if y>0 and x-y>0 and then O<y<x:

o 0 if x=0
fs(x)=01"e fdy and fsz(x):

Mxe ™ if x>0

2. If we continue we obtain the law of S;=S,+X; using the same

method: f ( s, ff s yfy( x,x— y)dy , nonzero if O<y<x.
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0 if x<0

fss(x):)fe_“fydy and fsz(x): 2
° Me™™ if x>0

We thus prove by induction the law of S,:

0 if x<0

AX e f x>0

3. The law of M, is an affine function of Si: fM"(X):n fsn(” x)

0 if x<0

then: fM,,(X) = ! N
A" e if x>0
(n—1) T

E16: Inverse distribution Exercise on page 125

1. F,(y)=P(Y<y)=P(X=1/y)=1-P(X<1/y)

1 1
0 F(y)=1-F,(11y) nd f,(y)=Lp, (L),
y y
2.a 0 if x<0
fT,,(X) = " _HTK lf >0
(n—1)1x™"
11 1 1 1
b fyy)=Sr =%
y 1+—2 1+y
y

The inverse of a Cauchy distribution is also a Cauchy distribution.
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Chapter IV : Estimators

E1: Estimators of the mean FExercise on page 148

E(A3)=(E(X/)+E(X2)+E(X3))/3 (expectation linearity).
Then: E(A3)=3xm/3 and E(A;)=m. Also: E(B;)=m.

On the other hand: E(C;)=4/3 m.

Conclusion: A; and B; are estimators of m. Cs is not an estimator of m.
A; and B; are unbiased.

V(A5)=1/3* (V(X)+V(X2)+V(X5)) (independent variables).
Then: rAg(m ):V (A3) =ad’/3 .

V(B3)=1/6* V(X )+2%/6* V(X2)+3%6* V(X3)

and I'p, (m):V(B3):7 0’2/18 .

Conclusion: T As(m)<r Bz(m) and A; is a better estimator of the mean
than B3.

E2: Homokinetic Beam  Exercise on page 148

100 100

> v=1213%10° and ZV =152.3x10°

i=1
From the course we have the following unbiased estimator of the mean
T =v =1 Z v,
i=1

100

1
_—E v, and v,=1213 m
m 100, =1 a /s

From the course we have the following unbiased estimator of the

So: v

. 2
variance Oy

100

22100, 1 - 2 3
Then: 0,'="30" TZ 700 2 Zv ] and 0,°=52.15x10 .
1
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Now in accordance with the central limit theorem we have shown that
2

V(T )ZO—V . The sample size is sufficient and the distribution of the
n

n
estimator has a Gaussian profile:

VEV, L0, =V, %L, 050, 0y/Vn=1213+1.96X228/10

and v=1213+45 m/s with 95% confidence.

E3: Two estimators  Exercise on page 149

1. Whatever 0 Zp=1, besides O<pi<1 that's why 0 € ]0,1/4].
2. E(X)=0x30+1x0+2x(1-40) so E(X)=2-70. E(X*=4-150.
V(X)=4-150 - (2-70)* and V(X)=0(13-490).
3. E(Tw)=aE(X.)+b (expectation linearity).
and E(X,)=1/n.2E(X)=E(X) then E(T,)=a(2-70)+b=0 (not biased)
and a=-1/7 and b=2/7. So T:=(2-X.)/7.
V(Tw)=1/49.V(X,) but V(X,)=V(X)/n then V(T,)=0(13-496)/49n
4. E(Y)=6 then E(Z,)=n6 and E(U,)=0, estimator unbiased.
Values of Y 0 1
Probabilities 1-6 0
V(U,)=1/m*V(Z,) but V(Z,)=nV(Y) and V(Y)=0- 6%, V(U,)=0(1-0)/n.
5. Xi100=(0x31+1x12+2x57)/100=1.26 Ti00=(2-1.26)/7 and 0:=0.106
rr(0)=V(T100)=0.106(13-49x0.106)/4900 and rr(0)=V(Ti00)=1.7x10*.
Ui90=12/100 then 6y=0.12. V(Ui00)=0.12x0.88/100 and
10(0)=V(U100)=10.6x10™. r+(0) < ru(0) : We prefer Tico.
And T, in general because rr- ry=-360/49n < 0 whatever 6 and n.

E4 : Ballot boxes  Exercise on page 150

E(Pi)=p wit i= 1 or 2 (expectation of a binomial distribution).
E(T)=(E(P1)+E(P2))/2=2p/2 and E(T)=p.

E(U)=xp+(1-x)p and E(U)=p.

We have two estimators unbiased of p.

V(Pi)=nipq with q=1-p (variance of a binomial distribution).

V(T)= 1/4(V(P)+V(P,)) because P, and P, are independent variables.
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Then V(T)=(n+n2)pg/4. Also V(U)= (x’n; + (1-x)*n2)pg.

dV(U)/dx= (2xn; -2(1-x)n2)pq=0 and Xep=n2/(n;+n5).
V(U)=ninzpq/(n;+n) and V(U)-V(T)= - (n;-n2)*/4(n1+nz).

U has a mean square error smaller than V, then U is a better estimator
than V for Xqp (U=V if ni=n,).

ES: Continuous variable Exercise on page 150

1. We have a positive density.

Let calculate the integral f f (X ) dx and show the value is 1:

A
=]~ “la]A=1-1/A" and lim I,=1
“ ax a
A J. a+1dX— a+1/(—(:l+1)]114 and E(X):—l
X

1 —

3. L(x;a)= fol,a H 2

a+1l
Hx

then In L=nlna—(a+1)),Inx, and dlnL n Zlnx

i=1

dinL = . n _ n

da 0 Ty ([ x)

and

Method of Moments: X= a4 and a= X .
a—1 x—1
4,
o Maximum Likelihood: a= 8 and a=3.02
In(14.18)

e Method of Moments: X=~1.52 and a=~2.94 .
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35

A

a a a— .. .

5. KA:'[FdX:E[UX 2]? this integral tends to a finite
1

limit only if a> 2. Otherwise the integral is divergent and the variance
is not defined.

a
Ifa>2 E(X°)= and V(X)=———— .
(X') a—?2 (a—2)(a—1)
6. We want to simulate X with a uniform distribution U(0,1). We use
the inversion method. The cumulative distribution function give:

1

so X=—-—-.

1
Fix)=1—-—= and x=—~
( ) Xa y (1_y)1/a Ul/a

We obtain for our sample of size n=8 and N=10,000 trials the
following distribution:

3.0 7

25

2.0

15

1.0

0.5

0.0

Simulation of fx(x) for a=3.02

We find by the simulation: E(X)~1.49 and o0x=~0.85, values that
correspond to the theoretical values.

For the maximum likelihood estimator we have the following
distribution for N=10,000:
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0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10 :
005  ~ R

0.00 ¥ L o et
1 2 3 4 5 6 7 8 9 10 11

Simulation with the maximum likelihood estimator for a=3.02

We find by the simulation a mean 3.44 and a standard deviation 1.4 .

For the method of moments estimator we have the following
distribution for N=10,000:
0.50

0.45
0.40 T
0.35 :
0.30
0.25
0.20
0.15 s
0.10 _-'- ALEINE
005 - e
0.00 —= R LR

1 2 3 4 5 6 7 8 9 10 11

Simulation with the method of moments estimator for a=2.94
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We find by the simulation a mean 3.54 and a standard deviation 1.4 .

In both cases we have significant biases. The mean, the expectation of
the estimator, is well above the point estimate of a. The variance is also
important, for example at 90% with the method of the maximum
likelihood, the interval of a is between 1.8 and 6.1 approximately.

At this stage of the study we are not assured of an asymptotically zero
bias, nor of a convergence. Simulations should be carried out for
different sample sizes in order to conjecture the evolution as a function
of n of bias and mean square error.

We can also undertake an analytical calculation of the distribution of
estimators by product of convolutions and composition of functions.

Simulations on the LibreOffice spreadsheet:
www.incertitudes. fr/livre/Simul5.ods

E6: Linear Density  Exercise on page 151

1. (ax+b)dx:g+b:1 and b=1-2

2

ot—

Moreover f(0) and f(1) must be positive hence: -2 < a < 2.
1

2. E(X) _!(ax +b x)dx 3+2 and E(X) 2+12
b 1 a 1 a (1 al
E(x)=%+2-2,9 x)=t,a_[1,a
(X)=gr3=3+yy md VIX)=3+; (2+12
2 2
so V(X) 1 a _12-a

E(T,)=a , estimator unbiased.

1

2
V(T,)=144x5xnV(X) and v (T )=12=9
n

n
4. With the estimator of question 3.: a,~0.59.
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We have a linear relation between the estimator of a and that one of
the mean, thus, as the mean, the estimator of a obeys the central limit
theorem and in the case of the large numbers: a=a,, * t.s/Nn. Here,
n=9, the sample is too small for this method. Nor can we use Student's
distribution because the distribution of the population is linear and not
Gaussian. We could do then an integral calculation or a numerical
simulation.

E7: Estimators for the exponential law Exercise on page 151

_nh
"\ Fe _nh
1 E(Tn)_(n—l)!{ 7 dx ,let u= . and
E(T,,)I (nn_kl)' { un_ze—u dx:ﬁln . With an integration

So E(Tn):nTK and bT()‘):n):l
, n2n2 n)2 A\’
E(T"):(n—l)' n—1_(n_1)(n_2) , (Tn)_(n—Z)(n—1)2
(n+2)

(n=2)(n—-1)

2
2. E(WH)ZX and V(Wn):rW"(K): )‘2 (using the properties

of expectation and variance).

3. We prefer W, to estimate A because unlike T, its bias is zero and
moreover its mean square error is lower.
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E8 : Decays Exercise on page 152

1. Let us make a false reasoning:

Average of the ten measured lifetimes: m=2.60 ps.

Sample standard deviation: s=~2.24 us.

Student's t-value: t~1.83 (9 degrees of freedom and 90% confidence).
Central limit theorem: m=2.6 * 1.3 ps with 90% confidence.

This result is a good estimate for the mean (zero bias, controlled risk-
mean square error).

For A, the inverse of the mean, we now use the uncertainty
propagation formula: A=1/m then A A=Am/m’

So: A =0.39 £ 0.19 /us with a confidence of 90%.

Comments :

1. Here the central limit theorem can not be applied because we clearly
have a small sample (n=10). Moreover, although Student's distribution
can be used for small numbers, it is used only when the population is
normal, which is not the case here because it is an exponential
distribution. If we had taken t. it was also false because n small. One
can imagine that to enlarge with the Student would make it possible to
counterbalance the small number, but it is a rush job and it is false!

2. The uncertainty propagation formula is an approximation, it is exact
if all distributions of probabilities have the same form, here it is not the
case. However, the approximation is correct and the calculation is fast.
But nothing assures us that we are with a confidence of 90%, maybe a
little less or a little more. We do not control our estimate here.

2. By applying a linear function and according to the exercise on page
151:

n
n—1

3 nx (n_l)nflkn _(”*XU)\
= )=

We then integrate on the first 5 percentiles and then the first 95

percentiles to obtain the limits of the confidence interval:
o

ffw )dx=0.05 and ffw )dx=0.95

By numerical calculation of the integrals: Amin=0.221 and Amx=0.639 .
And finally: A=0,385 igigj /us with 90% confidence.

>
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3. We generate 10 identical and independent exponential distributions

X; from ten independent uniform continuous distributions Ui(0,1):
Xi=-In(U;) / A

We take A as the point estimate obtained with the sample.

Here n=10, then: W10=9/(Xi+X>+...4Xi0). The computer performs this

calculation N=10,000 and the 10000 results for W, are sorted by class

and placed on a graph to create the W0 sampling distribution. With the

discretized cumulative distribution function we evaluate the positions

of the 5th and 95th centiles: Xs5%=0.22 and Xo5%,~0.64 .

Then: A=0.39 igi? /us with a confidence of 90%.

This result fully corroborates the exact calculation.

Simulation of the A estimator distribution

n=10, bias zero and N=10,000

0.0 0.2 0.4 0.6 0.8 1.0 12

File created with the LibreOffice spreadsheet:

www.incertitudes. fr/livre/Expos.ods
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Illustrations

3D representations in front of the table of contents and third thumbnail
of the back cover.

A random walker moves in a plane. He throws two coins and looks at
the results: two tails, one tail and one head, one head and one tail or
two heads. The first coin tells him if he has to make a first move
towards the East or the West, the second if he has to make a second
step towards the South or the North. Thus at each time interval Af he
moves in the plane of two steps. During At the distance traveled by the
walker is Ad = 2 p (p length of one step).

At what distance from the starting point is the walker at the instant t?
(after n time intervals: t = n Af)

For n=1, we draw the following tables:

05/ 11 250 | 25%
05/ 1
-0.5 0.5 25% | 25%

The center of the table is its starting point. On the abscissa x (direction
East-West) the displacement is more or less one step (x=%p, p= Ad 2
and we have fixed Ad=1). Similarly on the y-axis: y=#p. In each
square is indicated the number of possibilities to meet at this place.
The second table indicates the probabilities (1/4, 4=2x2).

In the four possibilities he is at a distance V2/2 from the point of origin.
And, in terms of standard deviation, the characteristic distance is

s=y(4x1/v2)/(4—1)~0.816 .

For n=2, we draw the following tables:

6% |13%| 6%
13% | 25%| 13%
6% |13%| 6%

-1

o
N
oN AN
RN e
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For example to be at (x=0 ; y=-1), there are two possible paths:
(PF,PP) and (FP,PP). Standard deviation s,~1.033 .
The walker has a one in four chance to be back to the starting point.

For n=3, we draw the following tables:

15
0.5
-0.5
-1.5

3
9
9

1
3
3
1

3

3
9
9
3

1
3
3
1

-1.5-05 05 15

2%

5% | 5%

2%

5%

14% | 14% | 5%

5%

14%  14% | 5%

2%

5% | 5%

2%

For n=4, we draw the following tables:

5,~1.234

114,641 0.4%]1.6%) 2.3%)| 1.6%]0.4%
416124116 4 1.6%6.3%) 9.4%) 6.3%|1.6%
6124|3624 | 6

2.3%|9.4%)| 14%)9.4%|2.3%
4116/24|16/| 4 >
114al6lal1 1.6%|6.3%)| 9.4% 6.3% 1.6%
2 -1 0 1 2 0.4%]1.6%) 2.3%|1.6%|0.4%

For n=5, we draw the following tables:

2.5
15
0.5
-0.5
-15
-2.5

10

10

25

50

50

25

10

50

100

100

50

10

10

50

100

100

50

10

25

50

50

25

10

10

-2.5

-1.5-05 0.5

15

2.5

0.1%

0.5%] 1.0%

1.0%] 0.5%|0.1%

0.5%

2.4%) 4.9%

4.9%) 2.4%0.5%

1.0%

4.9%) 9.8%

9.8%|4.9%|1.0%

1.0%

4.9% 9.8%

9.8%] 4.9%)1.0%

0.5%

2.4%) 4.9%

4.9%)2.4%0.5%

0.1%

0.5%] 1.0%

1.0%] 0.5%|0.1%
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For n=6, we draw the following tables:

3 6115/20/15| 6 0.0%) 0.1%|0.4%) 0.5%) 0.4% 0.1%0.0%
216 /361901201 90| 36 0.1% 0.9%|2.296 2.99%| 2.2% 0.9% 0.1%

1 (15|90 |225|300|225| 90 | 15
0.4%) 2.29%| 5.5%) 7.3%) 5.5% 2.2%10.4%

0 |20 120|300 |400|300|120| 20
11151 90 225|300 225| 90| 15| %:5%|2:9%7.3% 9.8% 7.3% 2.9% 0.5%
21 6136/90|120/90|36| 6 | 0.4%) 2.2%)5.5%)7.3% 5.5%) 2.2%|0.4%
3 6 |15]20|15 0.19%| 0.9%)| 2.2%) 2.9%) 2.2%0.9%10.1%
3 -2 -1 0 1 2 3  (,0%0.1%]0.4% 0.5%) 0.4%) 0.1%0.0%

Hence the evolution of the quadratic mean distance from the starting
point as a function of time:

t (At)

0

1 2

3 4 5 6

Vit

0.00

1.00|1.41

1.73|2.00|2.24 | 2.45

s (2p)

0.000

0.816| 1.033

1.234| 1.417| 1.582| 1.732

We plot the curves s as a function of t and s as a function of t:

2.0

15

1.0

0.5

00 =

01 2 3 456 7

2.0

15

1.0 -

0.5

0.0 =
0.0 051015 2025 3.0

We find a much better correlation in vz. Indeed we saw directly that the
distance at the origin did not evolve proportionally to time, for n=2 we
are about one unit of the origin, so we should be towards 3 for n=6.
This variation in V¢ is characteristic of diffusion phenomena and here
finds its analogy with the compensation of errors in Vh.
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IX. TABLES / Index

A. Standard normal distribution

flz)=

e

1
V21

F(2)=] flz)dz=p(z<z) P(z>2)=1-P(2<2)

P(Z<-z)=P(Z>z) Example:

0

0.01

0.02

0.03

0.04

P(Z<1.67)=0.95254

0.05

0.06

0.50000

0.50399

0.50798

0.51197

0.51595

0.51994

0.52392

0.07
0.52790

0.08

z
2

0.09

0.53188

0.53586

0.53983

0.54380

0.54776

0.55172

0.55567

0.55962

0.56356

0.56749

0.57142

0.57535

0.57926

0.58317

0.58706

0.59095

0.59483

0.59871

0.60257

0.60642

0.61026

0.61409

0.61791

0.62172

0.62552

0.62930

0.63307

0.63683

0.64058

0.64431

0.64803

0.65173

0.65542

0.65910

0.66276

0.66640

0.67003

0.67364

0.67724

0.68082

0.68439

0.68793

0.69146

0.69497

0.69847

0.70194

0.70540

0.70884

0.71226

0.71566

0.71904

0.72240

0.72575

0.72907

0.73237

0.73565

0.73891

0.74215

0.74537

0.74857

0.75175

0.75490

0.75804

0.76115

0.76424

0.76730

0.77035

0.77337

0.77637

0.77935

0.78230

0.78524

0.78814

0.79103

0.79389

0.79673

0.79955

0.80234

0.80511

0.80785

0.81057

0.81327

0.81594

0.81859

0.82121

0.82381

0.82639

0.82894

0.83147

0.83398

0.83646

0.83891

0.84134

0.84375

0.84614

0.84849

0.85083

0.85314

0.85543

0.85769

0.85993

0.86214

0.86433

0.86650

0.86864

0.87076

0.87286

0.87493

0.87698

0.87900

0.88100

0.88298

0.88493

0.88686

0.88877

0.89065

0.89251

0.89435

0.89617

0.89796

0.89973

0.90147

0.90320

0.90490

0.90658

0.90824

0.90988

0.91149

0.91309

0.91466

0.91621

0.91774

0.91924

0.92073

0.92220

0.92364

0.92507

0.92647

0.92785

0.92922

0.93056

0.93189

0.93319

0.93448

0.93574

0.93699

0.93822

0.93943

0.94062

0.94520

0.94630

0.94738

0.94845

0.94950

0.95053

0.95154

0.95543

0.95637

0.95728

0.95818

0.95907

0.95994

0.96080

0.94179
0.95254
0.96164

0.94295

0.94408

0.95352

0.95449

0.96246

0.96327

0.96407

0.96485

0.96562

0.96638

0.96712

0.96784

0.96856

0.96926

0.96995

0.97062

0.97128

0.97193

0.97257

0.97320

0.97381

0.97441

0.97500

0.97558

0.97615

0.97670

0.97725

0.97778

0.97831

0.97882

0.97932

0.97982

0.98030

0.98077

0.98124

0.98169

0.98214

0.98257

0.98300

0.98341

0.98382

0.98422

0.98461

0.98500

0.98537

0.98574

0.98610

0.98645

0.98679

0.98713

0.98745

0.98778

0.98809

0.98840

0.98870

0.98899

0.98928

0.98956

0.98983

0.99010

0.99036

0.99061

0.99086

0.99111

0.99134

0.99158

0.99180

0.99202

0.99224

0.99245

0.99266

0.99286

0.99305

0.99324

0.99343

0.99361

0.99379

0.99396

0.99413

0.99430

0.99446

0.99461

0.99477

0.99492

0.99506

0.99520

0.99534

0.99547

0.99560

0.99573

0.99585

0.99598

0.99609

0.99621

0.99632

0.99643

0.99653

0.99664

0.99674

0.99683

0.99693

0.99702

0.99711

0.99720

0.99728

0.99736

0.99744

0.99752

0.99760

0.99767

0.99774

0.99781

0.99788

0.99795

0.99801

0.99807

0.99813

0.99819

0.99825

0.99831

0.99836

0.99841

0.99846

0.99851

0.99856

0.99861

0.99865

0.99869

0.99874

0.99878

0.99882

0.99886

0.99889

0.99893

0.99896

0.99900

0.99903

0.99906

0.99910

0.99913

0.99916

0.99918

0.99921

0.99924

0.99926

0.99929

0.99931

0.99934

0.99936

0.99938

0.99940

0.99942

0.99944

0.99946

0.99948

0.99950

0.99952

0.99953

0.99955

0.99957

0.99958

0.99960

0.99961

0.99962

0.99964

0.99965

0.99966

0.99968

0.99969

0.99970

0.99971

0.99972

0.99973

0.99974

0.99975

0.99976

0.99977

0.99978

0.99978

0.99979

0.99980

0.99981

0.99981

0.99982

0.99983

0.99983

0.99984

0.99985

0.99985

0.99986

0.99986

0.99987

0.99987

0.99988

0.99988

0.99989

0.99989

0.99990

0.99990

0.99990

0.99991

0.99991

0.99992

0.99992

0.99992

0.99992

0.99993

0.99993

0.99993

0.99994

0.99994

0.99994

0.99994

0.99995

0.99995

0.99995

0.99995

0.99995

0.99996

0.99996

0.99996

0.99996

0.99996

0.99996

0.99997

0.99997

0.99997

0.99997

0.99997

0.99997

0.99997

0.99997

0.99998

0.99998

0.99998

0.99998

238




B. Student's t-values

-t t

S\t,:?f;t Confidence (%)
t 50 80 920 95 98 99 99.5/ 99.8 99.9
1 1.00| 3.08 6.31 127 318 637 127 318 637
2| 0.82| 1.89] 292 430 6.96| 992 14.1 223 31.6
3| 076 1.64] 235 318 4.54| 584] 7.45 102 12.9
4] 074 153 213 278 3.75 460 560 7.17] 861
m 5 0.73| 1.48 2.02| 257 3.36/ 4.03] 4.77/ 5.89 6.87
I3 6| 0.72| 1.44] 1.04] 245 314 371 432 521 596
GE) 7 071 1.41] 1.89] 2.36| 3.00/ 3.50 4.03] 4.79] 5.41
8 8 071 1.40 1.86 231 290/ 336 3.83 4.50 5.04
8 9 0.70| 1.38| 1.83] 2.26| 2.82| 3.25| 3.69 430 4.78
5 10| o0.70| 1.37| 1.81] 2.23] 276 3.17| 358 4.14] 459
] 11 0.70/ 1.36] 1.80| 2.20| 2.72| 3.11| 3.50, 4.02| 4.44
LE) 12| 0.70/ 1.36| 1.78] 2.18| 2.68| 3.05| 3.43] 3.93 4.32
3 13| 069 1.35| 1.77| 2.16| 265 3.01| 3.37] 3.85 4.22
g 14/ 0.69| 1.35 1.76| 2.14| 2.62| 2.98| 3.33] 3.79 4.14
-~ 15| 0.69| 1.34] 175 2.13| 2.60| 295 329 3.73 4.07
E 16/ 0.69| 1.34| 1.75| 2.12| 258 2.92| 3.25 3.69 4.01
é 17| 0.69| 1.33] 1.74| 2.11| 257 2.90| 3.22| 3.65 3.97
F\l) 18| 0.69| 1.33] 1.73] 2.10| 255/ 2.88/ 3.20, 3.61 3.92
7 19 0.69| 1.33] 1.73] 2.09| 254 2.86| 3.17| 3.58 3.88
° 20| 069 1.33 1.72] 2.09] 253 285 3.15 355 3.85
e 22| 0.69| 1.32| 1.72| 2.07| 2.51| 2.82| 3.12| 3.50 3.79
g 24| 0.68| 1.32| 1.71] 2.06/ 2.49| 2.80| 3.09] 347 3.75
E 26| 0.68| 1.31| 1.71| 2.06| 2.48| 2.78| 3.07| 3.43] 3.71
.8 28/ 0.68| 1.31| 1.70| 2.05| 2.47| 2.76| 3.05| 3.41 3.67
% 30/ 0.68| 1.31| 1.70| 2.04| 2.46| 2.75| 3.03] 3.39] 3.65
f 40| 0.68| 1.30 1.68 2.02| 2.42| 2.70| 2.97| 3.31 3.55
8 50/ 0.68| 1.30| 1.68/ 2.01| 2.40| 2.68| 2.94] 3.26/ 3.50
8 60/ 0.68| 1.30| 1.67| 2.00/ 2.39| 2.66| 2.91] 3.23] 3.46
;.)7 70, 0.68| 1.29] 1.67| 199 238 2654 290 3.21 344
a 80| 068] 1.20) 1.66 1.99] 2.37| 2.64] 2.89] 3.20 3.42
90| 0.68| 1.29| 1.66/ 1.99| 2.37| 2.63| 2.88/ 3.18 3.40
100f 0.68| 1.29| 1.66/ 1.98 2.36| 2.63| 2.87| 3.17, 3.39
200, 068 1.29| 165 197, 235 2604 284 3.13 3.34
300, 068 1.28 1.65 197 2.34| 259 2.83 3.12/ 3.32
500 0.67| 1.28/ 1.65/ 1.96/ 2.33] 259 282 3.11] 3.31
1000, 0.67| 1.28/ 1.65/ 196/ 2.33| 258 2.81 3.10, 3.30
) 0.67| 1.28 1.64 1.96/ 2.33] 2.58/ 2.81 3.09 3.29
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C. Chi-square values

XZ

Probability o to reject the hypothesis while it is true (%)

99 90 75 50 30| 20 10 5 2 1 0,1

1| 0.000157 | 0.0158 | 0.102| 0.455| 1.07| 1.64| 2.71| 3.84| 5.41| 6.63| 10.8

2 0.0201| 0.211| 0.575| 1.386| 2.41| 3.22| 4.61| 5.99| 7.82| 9.21| 13.8

3 0.115| 0.584| 1.21| 2.366| 3.66| 4.64| 6.25| 7.81| 9.84| 11.3| 16.3

4 0.297 1.06| 1.92| 3.357| 4.88| 5.99| 7.78| 9.49| 11.7| 13.3| 18.5

5 0.554 1.61| 2.67| 4.351| 6.06| 7.29| 9.24| 11.1| 13.4| 15.1| 20.5

6 0.872 2.20| 3.45| 5.348| 7.23| 8.56| 10.6| 12.6| 15.0| 16.8| 22.5

7 1.24 2.83| 4.25| 6.346| 8.38| 9.80| 12.0| 14.1| 16.6| 18.5| 24.3

8 1.65 3.49| 5.07| 7.344| 9.52| 11.0| 13.4| 15.5| 18.2| 20.1| 26.1

9 2.09 4.17| 5.90| 8.343| 10.7| 12.2| 14.7| 16.9| 19.7| 21.7| 27.9

10 2.56 4.87| 6.74| 9.342| 11.8| 13.4| 16.0| 18.3| 21.2| 23.2| 29.6

11 3.05 5.58 | 7.58| 10.34| 12.9| 14.6| 17.3| 19.7| 22.6| 24.7| 31.3

£ 12 3.57 6.30| 8.44| 11.34| 14.0| 15.8| 18.5| 21.0| 24.1| 26.2| 32.9
_8 13 4.11 7.04| 9.30| 12.34| 15.1| 17.0| 19.8| 22.4| 25.5| 27.7| 34.5
0} 14 4.66 7.79| 10.2| 13.34| 16.2| 18.2| 21.1| 23.7| 26.9| 29.1| 36.1
fl_) 15 5.23 8.55| 11.0| 14.34| 17.3| 19.3| 22.3| 25.0| 28.3| 30.6| 37.7
5 16 5.81 9.31| 11.9| 15.34| 18.4| 20.5| 23.5| 26.3| 29.6| 32.0| 39.3
0 17 6.41 10.1| 12.8| 16.34| 19.5| 21.6| 24.8| 27.6| 31.0| 33.4| 40.8
(0] 18 7.01 10.9| 13.7| 17.34| 20.6| 22.8| 26.0| 28.9| 32.3| 34.8| 42.3
% 19 7.63 11.7 | 14.6| 18.34| 21.7| 23.9| 27.2| 30.1| 33.7| 36.2| 43.8
[0} 20 8.26 12.4| 15.5| 19.34| 22.8| 25.0| 28.4| 31.4| 35.0| 37.6| 45.3
E 21 8.90 13.2| 16.3| 20.34| 23.9| 26.2| 29.6| 32.7| 36.3| 38.9| 46.8
o 22 9.54 14.0| 17.2| 21.34| 24.9| 27.3| 30.8| 33.9| 37.7| 40.3| 48.3
5 23 10.2 14.8| 18.1| 22.34| 26.0| 28.4| 32.0| 35.2| 39.0| 41.6| 49.7
'g 24 10.9 15.7 | 19.0| 23.34| 27.1| 29.6| 33.2| 36.4| 40.3| 43.0| 51.2
5 25 11.5 16.5| 19.9| 24.34| 28.2| 30.7| 34.4| 37.7| 41.6| 44.3| 52.6
c 26 12.2 17.3| 20.8| 25.34| 29.2| 31.8| 35.6| 38.9| 42.9| 45.6| 54.1
27 12.9 18.1| 21.7| 26.34| 30.3| 32.9| 36.7| 40.1| 44.1| 47.0| 55.5

28 13.6 18.9| 22.7| 27.34| 31.4| 34.0| 37.9| 41.3| 45.4| 48.3| 56.9

29 14.3 19.8| 23.6| 28.34| 32.5| 35.1| 39.1| 42.6| 46.7| 49.6| 58.3

30 15.0 20.6| 24.5| 29.34| 33.5| 36.3| 40.3| 43.8| 48.0| 50.9| 59.7

31 15.7 21.4| 25.4| 30.34| 34.6| 37.4| 41.4| 45.0| 49.2| 52.2| 61.1

32 16.4 22.3| 26.3| 31.34| 35.7| 38.5| 42.6| 46.2| 50.5| 53.5| 62.5

33 17.1 23.1| 27.2| 32.34| 36.7| 39.6| 43.7| 47.4| 51.7| 54.8| 63.9

34 17.8 24.0| 28.1| 33.34| 37.8| 40.7| 44.9| 48.6| 53.0| 56.1| 65.2

35 18.5 24.8| 29.1| 34.34| 38.9| 41.8| 46.1| 49.8| 54.2| 57.3| 66.6

36 19.2 25.6| 30.0| 35.34| 39.9| 42.9| 47.2| 51.0| 55.5| 58.6| 68.0

37 20.0 26.5| 30.9| 36.34| 41.0| 44.0| 48.4| 52.2| 56.7| 59.9| 69.3

38 20.7 27.3| 31.8| 37.34| 42.0| 45.1| 49.5| 53.4| 58.0| 61.2| 70.7

39 21.4 28.2| 32.7| 38.34| 43.1| 46.2| 50.7| 54.6| 59.2| 62.4| 72.1

40 22.2 29.1| 33.7| 39.34| 44.2| 47.3| 51.8| 55.8| 60.4| 63.7| 73.4

240




Index

ADSOIULE ZETO.....eceovvieeiiee ettt e e 63
ACCUTACY ...ttt ettt ettt ettt ettt e e ettt e e et e e enbeeeeas 33
AZINZ. .ottt ettt sttt et e 107
ATItRMEIC MEAN.......cccvviierieeeiie ettt e eraaeeeee e 2
ASYIMPLOLES....eeeuvieitiriieeieenite ettt ettt st st e nee e 97
Ballot DOXES.....cvveiieieeieeeee et ee e 150
Bernoulli diStribDUtION........cccceivvvieeiieieiieeeeeeeeeeeeeeeee e eeees 105, 121
BaaS. ..o e e e 128
Binomial diStriDUtion..........cevvveeemeeieeeeeeeeeeeeeeeeeeeeereenenns 105, 121, 122
Binomial formula...........cccooiiveiiiiiiiiieeceee e 170
Box-Muller transform............cccoeeeeeiiieieeeiieieeeeeeeeeeeeeeee s 120
Cauchy's @qUATION. .....cccueeriierieeieeie ettt 90
Central imit theorem............ooovvvivieeieiieieeeeeeeeeeeeeeee e, 10, 140
Chebyshev's inequality..........ccoceevereerienenrieneesieenee e 139, 142
L 2.ttt et e e e e rre e et 77
Chi-squared diStribution............ccecueevueereeriieeieerie e 114, 124
Chi-SQUATEd tESE....c.ueeiieeiieiieeie ettt ettt eiiee e 30
ClASS INEETVAL ..eeeeeeeieeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeenes 6, 38
Coefficient de diSSYMELTIL. .......c.eevverueerieriirienieeieiee e 104
Confidence Interval..........ccoeeeeeevviiiieeiiieeeeeeeaeiaans 12, 62,97
CONVOIULION. .....eeeeeiiieiieeeeieeee et e e 110, 154, 158
Correlation COETHCIENL........ccuvveeiieiiiiieeeciiee et 48
Cumulative distribution function............cceeeevvevvveeeeeeeeeeeennnn. 107, 116
DIECAY ...ttt s 152
Decomposition into GausSSIans............ceeeeveereereereeereeeneeeneeennnes 101
Degrees of fre@dOm.......cccueeieeiiieiiiieieeeee et 13
Derivatives of ZEOMELTiC SETIeS.....cccueerveeriieriieiieeeriieeeeiieeeeiaeaen 170
Diffusion phenomena............coceveeeiererriererieneneeseeeese e 237
DiSCIetiZaAtiON EITOT ... ....cccveeeerieeereeeereeeetreeeeteeeeeeerrreeeeeeeearneeens 154
Error of the first Kind.........c.cooooeiviiiiieiiiiecceeeee e 26
Error of the second Kind..........c.c.ooovivviiiiiiiiiiiceeieiieeeeeeeeeeeeeeeeee 26
EStMALOT......cciiiiiiiicciiiee ettt e e e tve e e e e aaeeees 128
EXPECtatiON. ...cooueiiiiiiiiiieeiteteeee ettt 20
Exponential diStribution...........cocceceeverveenenieenneenneennne 112, 123, 133



FreQUENCY...coeiiiie ittt 6

Function of a continuous diStribution.............ccc.ceeveeeevveeenveeeennnnes 116
Gamma fUNCHON. ........ccoveiiiieieiiee ettt e 170
Gaussian dISIIDULION. .......uuvvvveiiiiieeieiiiieeeieeeeeeeeee e e e e e eeeeeeeeeees 10,19
Gaussian distribution 3D..........cccceeieeiiiieiiiieee e 42
GeomeEtriC diStIIDULION. .....veeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 106, 122
GEOMELIIC MEAN.......uvieerreeetieeeteeeereeeeaeeeeereeeeereeeereeeereeeereeeeeeeenes 2
Homokinetic Beam............oooooeiviiiiiiiiiiieeeeieee e 148
HYPOhESIS TESE...ceuvieuiieiieiieeit ettt ettt e e e s 24
INte@ral....c.oooiiiieie e 168
Integration by Parts..........cceceeveerierieeieenie et 169
Integration by SUbStItULION. .....c..cevirieriiriirieneeiereeeree e 169
Interval eStMALE. ........ccovvieieiieeeiee ettt et e e e e 139
Inverse diStribULION. ........ccvveieeeeiriiee e et eeeaee e eee e 125
Inverse transform sampling..........ccccceveeveevereencnennennieeniieenieene 119
Inverse transformation method...........c...ccovvveeiiieeiiieiiieceieeeen, 119
KUTTOSIS. .ttt e e e e e e eeeeeeenenaas 104, 115, 169
Least squares Mmethod..........c..ceceeverienenienenieneneereenieesieee 59, 76
LIKEINOOM. ......cveiiiieieciie et 135
LN SPECITML.....couuiiiiiiiiiiieiieeteete sttt 91
Linear densSity......cocueerierieriieenienieeieerteee ettt 151
LiNear regression..........oouevuiruereieieieieieeniieesresresseseeene e 59
LANEATIZAtION. ....cceiiiviiiieeeiieee ettt eeeee e eeete e e e e aenenees 68
Mean dEVIALION. ....coevvueeeeeeeeeeeeeee ettt e eeeeeeeeaan s 4,37
Mean SqQuare Error.........c.coiiiiiiiiiiieieeeeeeteeeete e 129
MEMOTYIESS PIOPETLY.....eeuvereererrieienieeienitetenieetesieesessesarenaeeeens 107
Method of Maximum Likelihood.............cccoveeeeriiiiiiiiiiiecieeens 135
Method of MOMENLS........ccoovueieeeeiireeeeeeireeeeeeereeeeeeerreeeeeerreeeeens 131
MOMENL.......eiiiiiiiiiiiiiiee et e e e e ee ettt eeeeeeeeeaaes 104, 169
Negative binomial diStribution...........cecceeereereneeceeneeenie e 122
NONINEAT TEEIESSION. ... .cuvereieeereieeereieieseeetesteeeeeeeeteseeeaeseeans 76, 81
Normal diStribUtiON. .......cccovvveieieeiiriee e et ee e e e 113
Numerical SIMULAtION. .........ccovveiiiiiiiiiieeeeieeee e eeeeeeeeeee e 119
Parabolic re@ression.........covueiueerierieiieteeeeee et 79
PoisSON dIStIIDULION. .....covvtiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaes 108, 123
Polynomial 1egreSSion.........c.eevererierierienienienieetereeeesie et 78



PIECISION. ....eeiiiiiriiiiirinieneecceteteeee et 33
PrediCtion......c..ocveiiieiiinineececectcceceee e 63
Prediction Interval.............ccocoveeeeiviiiiiiiiieeceereee e 12, 63,97
PriSIML.ceiiiiii e 91
Probability density function............ccceeeeveereeneneereneeseneeeseeee 19
Product of diStributions............ceceveeeeierieenienenienienieeeeese e 124
Propagation of standard deviations formula............ccccccovcueennnennne. 164
Propagation of uncertainties formula...........ccccoceeerveenieenneen. 53, 164
Random €ITOTS........coueevieriirienienieiericereceseee e 165
RaANGE...cniiiiie e 3,156
Refractive INAEX.......ccuevveriirieniinieienieeeeee e 90
Repeatability......cc.cocuevuirieriiiiirieeieieeteee et 33
Reproducibility......ccceevieiiiiiiiiie ittt 33
ReSIAUAL.......oooiiiiiieeeeeeeeeeeeeeeeeee e 60, 77
RESOIULION. ...ttt eeeeeeeeeeeaee e e e e eaaaees 33, 154
Sample standard deviation............ceceveeeieririenenieenentee e 3
Sampling diStribution...........cecueerieriieiierie et 10
SKEWINESS. ...vvveieeeirieeee et 104, 115, 169
Small variations method............uuveeeeevveeveeeeeeieeeeeeiiieeeens 74, 100, 205
Student's t-dIStrIDULION. ......cevvvvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 113,123
StUdEnt's t-ValUC.........eeovieruieeiieiierie ettt ettt eeree e e e e eaaee e 61
Sum of binomial diStributions..............cceeeverieriieereeriieeriiee e 122
Sum of exponentials...........ccceeveeiiiiiiiiiiiieeeee e 125
Sum Of GAUSSIANS.......coueervereriererieneetene ettt e 123
Sum of independent random variables............cccceveereeerueennennnee. 104
Sum of Student's t-diStribUtiONS..........cceevvererrienerienieerieeieene 124
TaAYIOT SETIES...ccuveeueietieriieeie ettt ettt ettt e e 108, 168
Thermal condUCHIVILY......c..ccoereerinerriinieiereeeeeeee e 92
Triangular diStribUtiON. .......ccveveerierierierieiereeeseeeese e 159
UNCETTAINLY ....eeuvetieeeeieeeesieetei ettt et te b enbeesaees 13
Uncertainty calculations.............cocueveriererieneneenennieeenieeeseeenieens 54
Uniform diStribution..........cccceeeieevveeeeeeeiiiieeieeeeeeeeen. 110, 123, 156
VATTANCE . ..ooeeeeeeeeeeeeeeeeeieeeeee e e e e e e e e e eeaaes 20, 104, 157, 162
WaAItING tIME.....coueeiiiiiieiiiente ettt sttt e e 140

243



This book is made for anyone interested in experimental
sciences and mathematics. Statistics and surveys are very
common in our society, and the application area is supposed
to be as large as possible. We are willing to go beyond the
theory so that the invistigator may find necessary tools to
solve simple and rigourous uncertainties quantification.
Indeed, science tries to link natural phenomena to a
mathematical logic. Overall coherence and truth need to be
practised by a critical mind that lays on measures
accompanied with their uncertainties.
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