Devoir Iurveillé

de

Thermodynamia

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

Toute application numérique, qui ne comportera pas d'unité, ne donnera pas lieu à attribution de points.

<u>Problème I</u>

On notera P, T, V les paramètres pression, température et volume d'un gaz; on notera respectivement C_p , C_v les capacités calorifiques molaires à pression et à volume constant, et γ le rapport $\gamma = \frac{C_p}{C_v}$. Dans la suite, les systèmes thermodynamiques étudiés seront des gaz parfaits.

.1. Quelques propriétés d'un gaz parfait.

.1.a. Rappeler l'équation d'état d'un gaz parfait; on désignera par n, le nombre de moles, et par R la constante molaire des gaz parfaits.

.1.b.

3

A

.1.b.α. Rappeler la relation qui lie la fonction d'état enthalpie H à la fonction d'état énergie interne U.

.1.*b*. β . Montrer que (relation de Mayer) $C_p - C_v = R$.

.1.b. γ . Exprimer C_v en fonction de R et γ .

.1.b. δ . n moles d'un gaz parfait évoluent d'un état initial caractérisé par P_0 , V_0 jusqu'à un état final caractérisé par P_1 , V_1 .

Montrer que la variation d'énergie interne de ce gaz parfait au cours de cette transformation peut s'écrire :

$$\Delta U = \frac{P_1 V_1 - P_0 V_0}{\gamma - 1}.$$

.2. Transformations réversibles d'un gaz parfait.

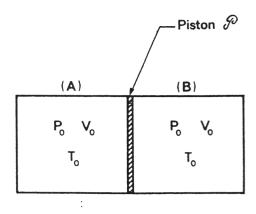


Figure 6

Un cylindre horizontal, de volume invariable, est fermé à ses deux extrémités par deux parois fixes. Ce cylindre est séparé en deux compartiments A et B par un piston $\mathcal P$ mobile sans frottements. Les parois du cylindre et le piston sont adiabatiques et de capacités calorifiques négligeables.

Dans l'état initial, les deux compartiments A et B contiennent un même nombre de moles d'un gaz parfait dans le même état P_0 , V_0 , T_0 (fig. 6).

On chauffe le compartiment A à l'aide d'une résistance électrique jusqu'à un état final où la pression dans le compartiment A est $P_1 = 3P_0$ (fig. 7).

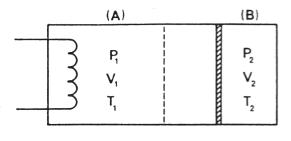


Figure 7

On pourra considérer la suite des états du système comme une suite d'états d'équilibre.

2.2.a. Calculer:

- .2.a.α. Pour l'état final du compartiment B:
 - la pression P₂,
 - le volume V₂,
 - la température T₂;
- .2.a.β. Pour l'état final du compartiment A:
 - le volume V₁,
 - la température T₁.
- .2.b. On veut déterminer la quantité de chaleur Q₁ fournie par la résistance chauffante au compartiment A.
 - .2.b. α . Montrer que Q_1 s'exprime très facilement en fonction des variations d'énergie interne des gaz des compartiments A et B (respectivement ΔU_1 et ΔU_2).
 - .2.*b*. β. Donner l'expression de Q_1 en fonction de P_0 , V_0 et γ.

.3. Détente irréversible d'un gaz parfait.

.3.c.

ρή. Δ.

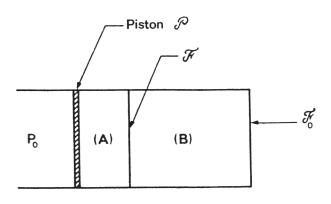


Figure 8

Un cyclindre horizontal est fermé à l'une de ses extrémités par une paroi fixe \mathcal{F}_0 , et à l'autre extrémite par un piston \mathcal{P} qui peut coulisser sans frottements le long du cylindre.

Le cylindre est séparé en deux compartiments A et B par une paroi fixe \mathcal{F} .

Sur la face extérieure du piston s'exerce la pression atmosphérique P₀ qu'on suppose uniforme et constante.

Dans la situation initiale, le compartiment A de volume V_A contient n moles d'un gaz parfait. Le compartiment B de volume V_B est initialement vide (fig. 8).

Les parois du cylindre et le piston sont adiabatiques et de capacités colorifiques négligeables.

- .3.a. Préciser la pression et la température initiales dans le compartiment A.
- .3.b. On perce un orifice dans la paroi fixe \mathscr{F} et on cherche à décrire les caractéristiques du nouvel état d'équilibre qu'on supposera atteint.
 - $3.b.\alpha$. En analysant qualitativement le problème, montrer que selon la valeur de V_B par rapport à une valeur-seuil V_{B_s} (qu'on ne cherchera pas à déterminer à ce stade de l'étude), deux types de solutions existent; pour répondre à cette question, on pourra s'intéresser à l'équilibre mécanique du piston dans l'état final.
 - .3.b. β . En supposant que V_B est inférieur à la valeur-seuil, déterminer les caractéristiques P_1 , V_1 , T_1 du gaz enfermé dans le cylindre A+B quand le nouvel état d'équilibre est atteint ; on exprimera ces grandeurs en fonction de toutes ou de certaines des données P_0 , γ , n, V_A , V_B et de R.
 - .3.b. γ . Déterminer la valeur-seuil V_{B_e} en fonction de V_A et de γ .
 - .3.b.δ. On suppose cette fois V_B supérieur à V_B.
 Déterminer P₂, V₂, T₂, du gaz enfermé à l'intérieur du cylindre dans le nouvel état d'équilibre; on exprimera ces grandeurs en fonction de toutes ou de certaines des données P₀, γ, n, V_A, V_B et de R.
 - .3.c. α . Déterminer l'entropie d'un gaz parfait (à une constante près) en fonction de n, C_p , γ , P et V.
 - .3.c.β. En déduire l'expression de la variation d'entropie ΔS_1 du gaz en fonction de n, γ , V_A , V_B et C_n dans le cas où l'état final est celui du C.3.b.β.
 - Ce résultat est-il conforme au second principe de la thermodynamique?
 - .3.c. γ . Déterminer de la même façon ΔS_2 : l'état final étant celui du C.3.b. δ .; ce résultat est-il conforme au second principe de la thermodynamique?

Évrection du Devoir Turveillé de

Thermodynamique

2+2.6.B. Q= ncv(T,-To) + ncv(T2-T0) = nR (T1+T2-2T0)

= DQ = MR To (3(2-1/3/8) + 1/3/18-1-27 = Povo =DQ=4 Povo

le qui est conforme au seand principe car: 05, = Seit Sei >0.