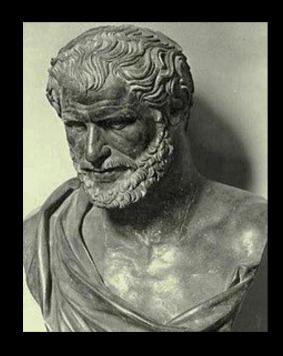
Atomes,

éléments chimiques, et radioactivité

Première Enseignement Scientifique

Système solaire


La voie lactée

Atome d'hydrogène :

Démocrite

- 400 JC

Fondateur de l'atomisme

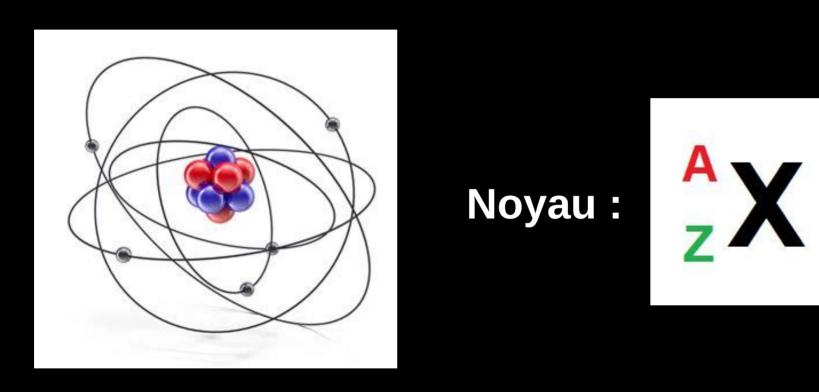
Mendeleïev

1869

опыть системы элементовъ.

основанной на ихъ атомномъ въсъ и химическомъ сходствъ.

```
Ti = 50
                          Zr = 90 ?=180.
                   V=51 Nb= 94 Ta=182.
                  Cr= 52 Mo= 96 W=186.
                  Mn=55 Rh=104,4 Pt=197,1
                  Fe=56 Rn=104.4 Ir=198.
               Ni-Co=59 Pi-106,8 O-=199.
 H = 1
                  Cu-63,4 Ag-108 Hg-200.
     Be = 9, Mg = 24 Zn = 65,2 Cd = 112
     B=11 A1=27,1 ?=68 Ur=116 Au-197?
     C=12 Si=28 ?=70 Sn=118
     N=14 P=31 As=75 Sb=122 Bi=210?
     0=16 S=32 Se=79,4 Te=128?
     F=19 Cl=35,6Br=80
                         1-127
Li = 7 Na = 23 K = 39 Rb = 85.4 Cs = 133 Tl = 204.
           Ca=40 Sr=87, Ba=137 Pb=207.
            ?=45 Ce=92
           ?Er=56 La=94
           ?Y1=60 Di=95
           ?ln - 75,6 Th = 118?
```


Д. Мекдельевъ

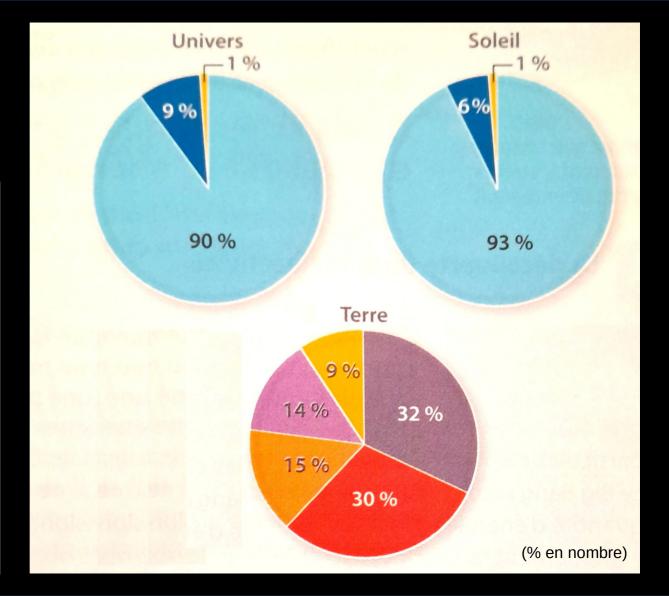
Éléments chimiques

H 1,007975			200 mars		4270	£082200		001.NC	o in colour.		10 mar						He 4,002602
Lithium 3 Li 6,9395	Béryllium 4 Be 9,0121831											Bore 5 B 10,8135	Carbone 6 C 12,0106	Azote 7 N 14,006855	Oxygène 8 0 15,99940	Fluor 9 F 18,99840316	Néon 10 Ne 20,1797 (6)
Sodium 11 Na 22,98976928	Magnésium 12 Mg 24,3055											Aluminium 13 Al 26,9815385	Silicium 14 Si 28,085 (1)	Phosphore 15 P 30,97376200	Soufre 16 S 32,0675	Chlore 17 Cl 35,4515	Argon 18 Ar 39,948 (1)
Potassium 19 K 39,0983 (1)	Calcium 20 Ca 40,078 (4)	Scandium 21 SC 44,955908 (s)	Titane 22 Ti 47,867 (1)	Vanadium 23 V 50,9415 (1)	Chrome 24 Cr 51,9961 (6)	Manganèse 25 Mn 54,938044	Fer 26 Fe 55,845 (2)	Cobalt 27 Co 58,933194	Nickel 28 Ni 58,6934 (4)	Cuivre 29 Cu 63,546 (3)	Zinc 30 Zn 65,38 (2)	Gallium 31 Ga 69,723 (1)	Germanium 32 Ge 72,630 (*)	Arsenic 33 As 74,921595	Sélénium 34 Se 78,971 (s)	35 Br 79,904	83,798 (2)
Rubidium 37 Rb 85,4678 (3)	Strontium 38 Sr 87,62 (1)	Yttrium 39 Y 88,90584	Zirconium 40 Zr 91,224 (2)	Niobium 41 Nb 92,90637	Molybdène 42 Mo 95,95 (1)	Technétium 43 TC [98]	Ruthénium 44 Ru 101,07 (2)	Rhodium 45 Rh 102,90550	Palladium 46 Pd 106,42 (1)	Argent 47 Ag 107,8682 (2)	Cadmium 48 Cd 112,414 (4)	Indium 49 In 114,818 (1)	Étain 50 Sn 118,710 (?)	Antimoine 51 Sb 121,760 (1)	Tellure 52 Te 127,60 (3)	lode 53 	Xénon 54 Xe 131,293 (6)
Césium 55 CS 132,905452	Baryum 56 Ba 137,327 (?)	Lanthanides 57–71	Hafnium 72 Hf 178,49 (2)	Tantale 73 Ta 180,94788	Tungstène 74 W 183,84 (1)	Rhénium 75 Re 186,207 (1)	Osmium 76 OS 190,23 (3)	1ridium 77 1r 192,217 (3)	Platine 78 Pt 195,084 (9)	Or 79 Au 196,966569	Mercure 80 Hg 200,592 (3)	Thallium 81 TI 204,3835	Plomb 82 Pb 207,2 (1)	Bismuth 83 Bi 208,98040	Polonium 84 Po [209]	Astate 85 At [210]	Radon 86 Rn [222]
Francium 87 Fr [223]	Radium 88 Ra [226]	Actinides 89–103	Rutherfordium 104 Rf [267]	Dubnium 105 Db [268]	Seaborgium 106 Sg [269]	Bohrium 107 Bh [270]	Hassium 108 Hs [277]	Meitnérium 109 Mt [278]	Darmstadtium 110 Ds [281]	Roentgenium 1111 Rg [282]	Copernicium 112 Cn [285]	Nihonium 113 Nh [286]	Flérovium 114 Fl [289]	Moscovium 115 MC [289]	Livermorium 116 Lv [293]	Tennesse 117 Ts [294]	Oganesson 118 Og [294]
			Lanthane 57 La 138,90547	Cérium 58 Ce 140,116 (1)	Praséodyme 59 Pr 140,90766	Néodyme 60 Nd 144,242 (3)	Promėthium 61 Pm [145]	Samarium 62 Sm 150,36 (2)	Europium 63 Eu 151,964 (1)	Gadolinium 64 Gd 157,25 (3)	Terbium 65 Tb 158,92535	Dysprosium 66 Dy 162,500 (1)	Holmium 67 HO 164,93033	Erbium 68 Er 167,259 (s)	Thulium 69 Tm 168,93422	Ytterbium 70 Yb 173,045	Lutécium 71 Lu 174,9668
			Actinium 89 AC	Thorium 90 Th	Protactinium 91 Pa	Uranium 92 U	Neptunium 93 Np	Plutonium 94 Pu	Américium 95 Am	Curium 96 Cm	Berkélium 97 Bk	Californium 98 Cf	Einsteinium 99 Es	Fermium 100 Fm	Mendélévium 101 Md	Nobélium 102 No	Lawrencium 103 Lr

Atome = noyau + nuage électronique

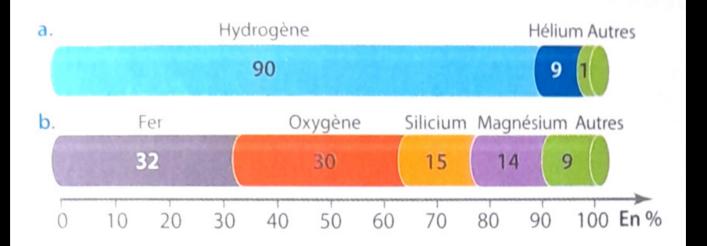
Élément chimique : atome, ions et isotopes.

Abondance des éléments chimiques :


Fer

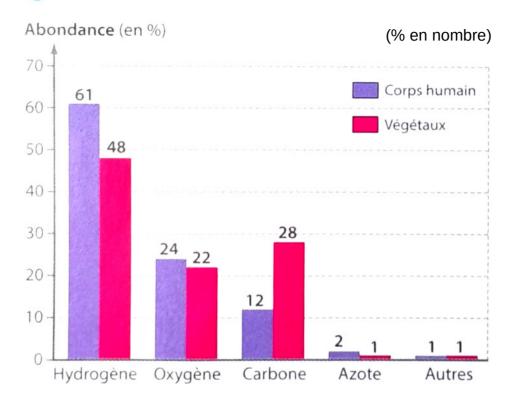
Oxygène

Silicium


Magnésium

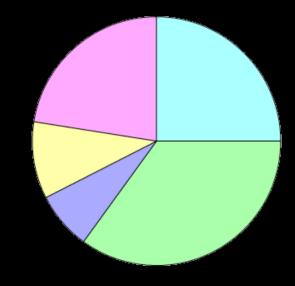
Autres

Exercice


1 La bonne association

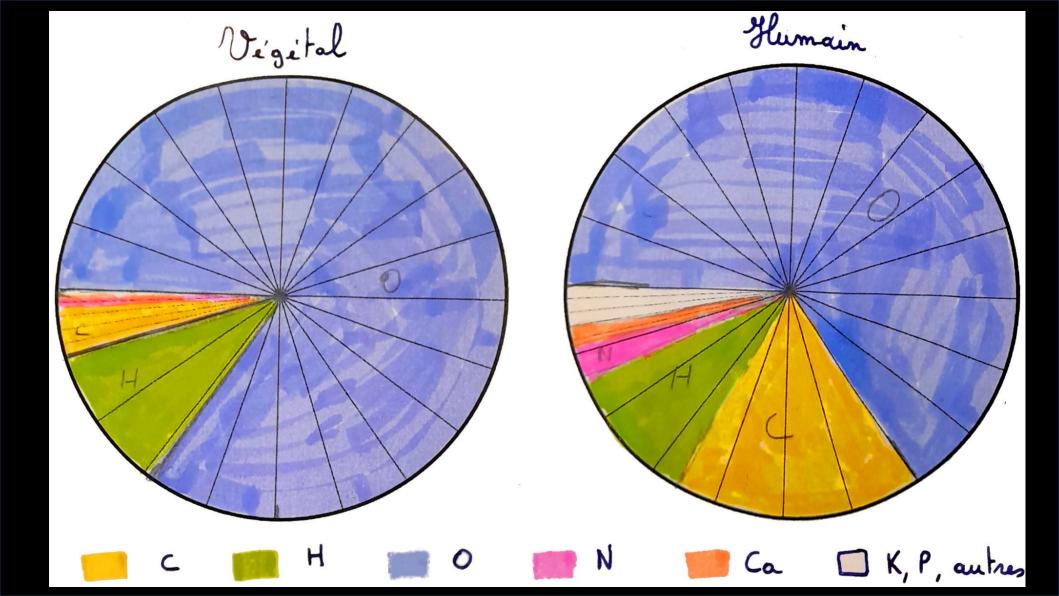
- 1. Associer l'Univers et la Terre aux représentations de la composition en éléments chimiques a et b ci-dessus.
- 2. Quel élément chimique initial a permis la formation d'autres éléments, plus lourds?

Exercice

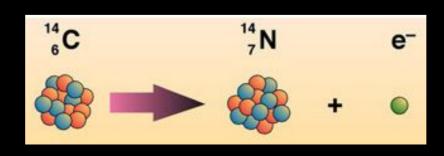

2 Lecture d'un graphique

- 1. Quels sont les deux éléments chimiques les plus abondants dans le corps humain? dans les végétaux?
- **2.** Dans le corps humain, quelle est la proportion de carbone? Quelle est-elle dans les végétaux?

Activité:


Abondances: tracer deux diagrammes circulaires.

Commentaires.


Éléments chimiques	Végétal % en masse	Humain (80 kg)
С	4,5	14,4
Н	10,6	8
0	84,5	52
N	0,15	2,4
Ca	0,05	1,2
K	0,1	0,2
Р	0,02	0,8

Végétal : Stout PR. 1961 corrigé à 90% d'eau / wikipédia Corps humain

Réactions nucléaires

Désintégration :

Lors d'une réaction nucléaire il y a conservation du nombre de nucléons et de la charge électrique.

La fusion et la fission sont provoquées.

Une désintégration est spontanée.

Exemple: transformation du polonium en plomb

$$^{210}_{84} Po \rightarrow ^{206}_{82} Pb + ^{4}_{2} He$$

Exercices:

$$^{15}_{7}N + ^{1}_{1}p \rightarrow ^{....}_{6}C + ^{4}_{....}He$$

a)
$$^{166}_{76}Os \rightarrow ^{100}_{74}W + ^{4}_{110}He$$

b) $^{100}_{95}At \rightarrow ^{210}_{94}Po + ^{0}_{94}e$

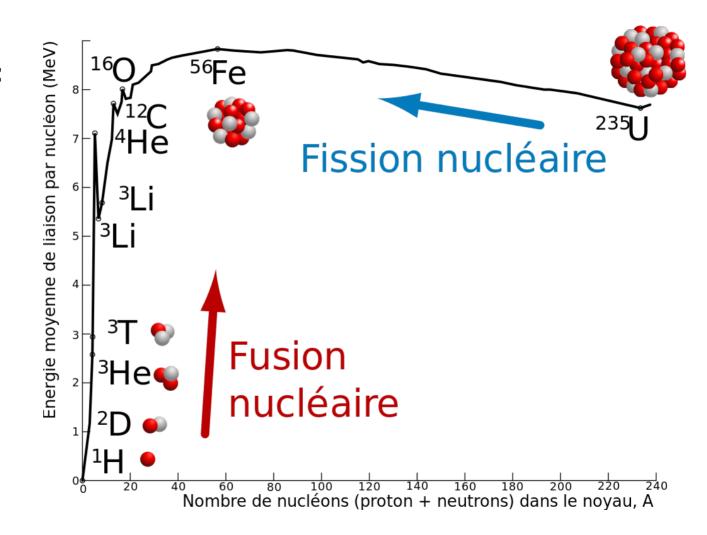
c)
$${}^{56}_{.....}Mn \rightarrow {}^{56}_{26}Fe + {}^{....}e$$

d) ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{.....}_{53}I + {}^{94}_{.....}Y + 3 {}^{1}_{0}n$

	ŭ	0.1		
	⁴⁸ Cr +	- ⁴ He	→ ⁵² ₂₆ Fe	
 2	$H + \frac{3}{2}$	He →	⁴ ₂ He + ¹ ₁ p	

Equation de la réaction

 $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + 2 ^{1}_{0}n$


 $^{239}_{94}$ Pu + $^{1}_{0}$ n $\rightarrow ^{135}_{52}$ Te + $^{102}_{42}$ Mo + 3 $^{1}_{0}$ n

Fusion ou

fission?

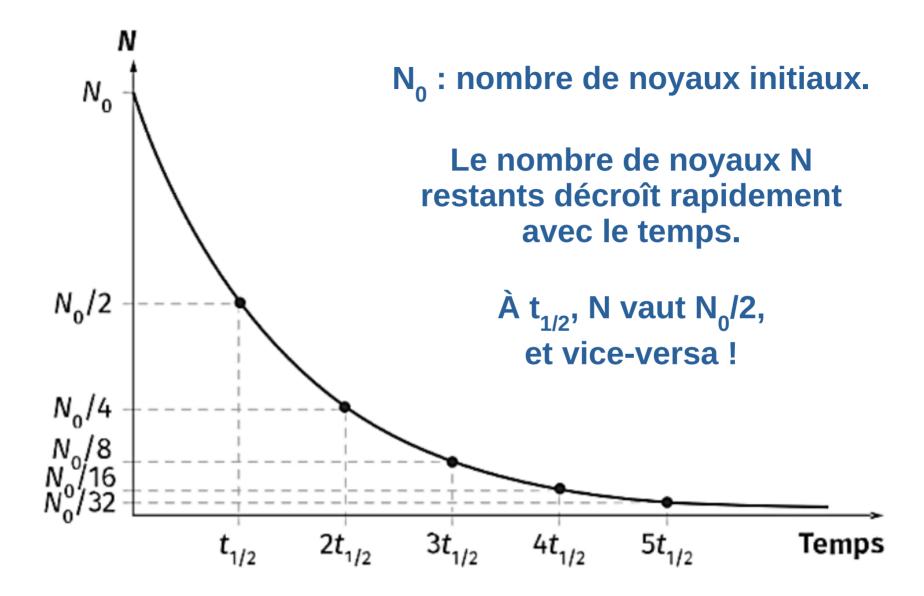
Nucléosynthèse dans les étoiles :

Les étoiles : machines à fabriquer des atomes.

Radioactivité

Un noyau radioactif est un noyau instable qui se désintègre de manière spontanée et aléatoire.

La durée de vie d'un atome est définie par sa demi-vie :


Après une demi-vie la moitié des atomes s'est désintégrée.

Les atomes ne vieillissent pas.

Radionucléides	$t_{1/2}$			
Iode 131	¹³¹ I	8 jours		
Cobalt 60	⁶⁰ Co	5,2 ans		
Strontium 90	⁹⁰ Sr	28,1 ans		
Césium 137	¹³⁷ Cs	30 ans		
Plutonium 239	²³⁹ Pu	24 100 ans		
Iode 129	¹²⁹ I	16×10^6 ans		
Uranium 238	²³⁸ U	$4,5 \times 10^{9} \text{ ans}$		

radioactive. (sur feuille papier)

Activité : tracé d'une courbe de décroissance

Exercice d'application : Datation au carbone 14 en archéologie (sur feuille papier)