NOM:

Devoir - Soleil

Première

Prénom:

Enseignement Scientifique

2023 / 2024

Partie 1 : Défaut de masse

Pour le projet de fusion contrôlée *Helion*, la réaction de fusion suivante est utilisée :

$${}^{2}H + {}^{3}He \rightarrow {}^{4}He + {}^{1}H$$

Déterminez l'énergie libérée lors de cette réaction entre le deutérium et l'hélium 3.

Données : $m(^{2}H)=3,34358.10^{-27}kg$, $m(^{3}He)=5,00823.10^{-27}kg$ $m(^{4}He)=6,64648.10^{-27}kg$, $m(^{1}H)=1,67265.10^{-27}kg$ $c=3.10^{8}m/s$

Partie 2 : Corps noir.

1. Quelle est la définition d'un corps noir ?
2. Donnez la loi de Wien :
2. Bolines in for the viter.
3. Sirius, l'étoile la plus lumineuse du ciel nocturne, située à 9 année-lumières, a une température de surface de 24 800 K, pourriez-vous estimer la longueur d'onde de la lumière émise par l'étoile ? Quelle est sa couleur ?

4. Étoile d'Aldébaran. À partir du spectre donné, en supposant le rayonnement proche de celui d'un corps noir, en déduire la température de surface d'Aldébaran en K et en °C.	6 - 5 - 4 - 3 - 2 - 1 - 0 - 400	Aldébaran (α Tauri) 500 600 700 Longueur d'onde [en nm]	800
5. Le rayonnement primordial émis 300 000 ans a de 3 K. Quelle-est la température en Celsius corre De quel type d'onde électromagnétique s'a	spondante?		empérature

.....

.....