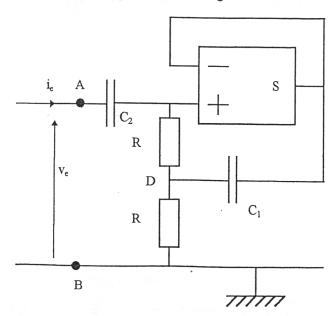
Montage équivalent à un circuit RLC série

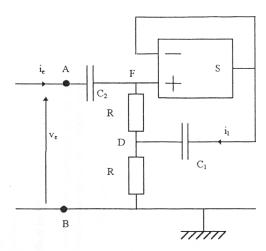
On considère le dipôle AB ci-dessous, l'AO étant supposé idéal et en régime linéaire.



On note \underline{V}_e et \underline{I}_e respectivement l'amplitude complexe de la tension d'entrée $v_e(t)$ et celle du courant d'entrée $i_e(t)$, en régime sinusoïdal forcé.

- 1. Calculer le rapport $\underline{Z}_e = \underline{V}_e / \underline{I}_e$, appelé impédance d'entrée du dipôle (en fonction des caractéristiques du circuit et de la pulsation ω).
- 2. Montrer que le dipôle est équivalent à un dipôle R_e L_e C_e série : on déterminera les éléments R_e , L_e et C_e .
- 3. Donner l'expression de la pulsation ω_0 (résonance d'intensité du dipôle). Calculer son facteur de qualité Q en fonction de C_1 et C_2 . Application numérique : On donne C_1 = 100 μF ; C_2 = 1 pF. Calculer Q. Conclusion ?

Montage équivalent à un circuit RLC série



1. L'AO étant idéal, le courant dans la résistance située entre F et D est ie, et le potentiel de F est égal au potentiel de S. On en déduit en exprimant les tensions à l'aide des courants et des impédances complexes :

$$\underline{V_e} - \underline{V_D} = \left(R + \frac{1}{jC_2\omega}\right)\underline{I_e} \qquad \text{d'où} \qquad \underline{V_D} = \underline{V_e} - \left(R + \frac{1}{jC_2\omega}\right)\underline{I_e} \quad (1)$$

d'où
$$\underline{V_D} = \underline{V_e} - \left(R + \frac{1}{jC_2\omega}\right)\underline{I_e}$$
 (1)

$$\underline{V_s} - \underline{V_D} = R\underline{I_e} = \frac{\underline{I_1}}{jC_1\omega} \quad \text{on d\'eduit } \underline{I_1} \text{ en fonction de } \underline{I_e} \qquad \underline{I_1} = jC_1\omega R\underline{I_e}$$

$$\underline{I_1} = jC_1 \omega R \underline{I_e}$$

Par ailleurs :
$$\underline{V_D} = R \left(\underline{I_e} + \underline{I_1} \right)$$

d'où
$$V_D = RI_e \left(1 + jRC_1\omega\right)$$
 (2)

$$\underline{V_{\underline{e}}} - \left(R + \frac{1}{jC_2\omega}\right)\underline{I_{\underline{e}}} = R\left(1 + jRC_1\omega\right)\underline{I_{\underline{e}}}$$

En comparant les deux expressions de \underline{V}_D on déduit

$$\underline{V_e} = \left(2R + j \left[R^2 C_1 \omega - \frac{1}{C_2 \omega}\right]\right) \underline{I_e}$$

D'où l'impédance d'entrée
$$\underline{Z}_{e} = \underline{V}_{e} / \underline{I}_{e}$$
:
$$\underline{Z}_{e} = 2R + j \left[R^{2} C_{1} \omega - \frac{1}{C_{2} \omega} \right]$$

2. L'impédance d'un dipôle
$$R_e$$
 L_e C_e série étant $\underline{Z} = R_e + j \left| L_e \omega - \frac{1}{C_e \omega} \right|$, on déduit, en identifiant :

$$R_e = 2R$$
; $L_e = R^2 C_1$; $C_e = C_2$

3. La pulsation de résonance d'un dipôle R_e L_e C_e série est $\frac{1}{\sqrt{L_e C_e}}$. On en déduit la pulsation de résonance du dipôle AB :

$$\omega_0 = \frac{1}{R\sqrt{C_1 C_2}}$$

Le facteur de qualité est $Q = \frac{L_e \omega_0}{R}$ $Q = \frac{1}{2} \sqrt{\frac{C_1}{C_2}} = 5000$: très grand.

On obtient un facteur de qualité largement supérieur à celui auquel conduirait l'utilisation d'une bobine