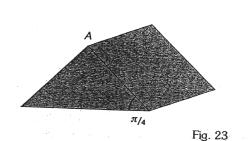


FIG. 2.24.

GdB_10log(Ps)

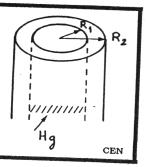

5 – Les pertes par transmission dans la fibre sont exprimées en dB.km $^{\!-1}$. On injecte à l'entrée de la fibre une puissance P_1 et on obtient à la sortie une puissance P_2 .

Sachant que la fibre a une atténuation de $0,2\,\mathrm{dB.km^{-1}}$ et que $P_1=1\,\mu\mathrm{W},$ calculer P_2 pour une fibre de $1\,\mathrm{km}$ de longueur puis pour une fibre de $2\,\mathrm{km}$ de longueur.

Exercice d'application

Prisme à réflexion totale

Il s'agit d'un dièdre d'angle au sommet $A=90^\circ$ et de face d'entrée isocèle (Fig. 23), constitué par un verre d'indice n=1,5. Il est placé dans certains systèmes optiques pour provoquer une déviation de $\frac{\pi}{2}$ ou de π d'un rayon lumineux.



Tec & Doc
Physique Sup.
PCSi
Grecias
Nigeon

- a) Comment faut-il faire arriver le rayon incident dans les deux cas ?
- b) Quelle condition doit vérifier l'indice?

1001

* Un tube en verre – d'indice n=3/2 – est rempli de mercure. Trouver la valeur limite du rapport R_1/R_2 pour que le mercure semble remplir tout le tube.

Oral les grands classiques de Y/X Bréal

06 - ÉCLAIRAGE D'UN BASSIN

Un bassin de profondeur h = 1 m est totalement rempli d'eau, d'indice

 $n = \frac{4}{3}$. L'indice de l'air sera pris égal à

1. Au fond du bassin est placée une source ponctuelle émettant de la lumière dans toutes les directions. Quel est le rayon du disque lumineux qui se forme à la surface de l'eau?