FXY

Evolution irréversible et retour à l'état initial

Une mole d'un gaz parfait de capacité thermique à volume constant $C_{Vm} = \frac{5R}{2}$ est contenue dans un cylindre vertical calorifugé comportant un piston mobile calorifugé de section S=0,01 m² en contact avec une atmosphère extérieure à pression constante p_0 . Initialement, le piston est libre et le gaz est en équilibre dans l'état E_0 , sa température vaut $T_0=300$ K et son volume vaut V_0 . On donne R=8,314 J.K $^{-1}$.mol $^{-1}$ et g=9,81 m.s $^{-2}$. 2

- 1) On pose sur le piston une masse M=102 kg et on laisse le système évoluer. Déterminer sa pression p_1 , son volume V_1 et sa température T_1 lorsqu'on atteint un nouvel état d'équilibre E_1 . Calculer la variation d'entropie du gaz $\Delta S_{0\to 1}$ et commenter.
- 2) Pour ramener le système dans son état initial, on supprime la surcharge et on déplace lentement le piston pour faire subir au gaz une détente $1 \to 2$ réversible dans le cylindre calorifugé, jusqu'au volume $V_2 = V_0$; puis on bloque le piston, on supprime l'isolation thermique du cylindre et on met le système en contact avec un thermostat à la température T_0 : il évolue de manière isochore jusqu'à un état d'équilibre E_3 . Déterminer la pression et la température dans les états E_2 et E_3 . Calculer les variations d'entropie $\Delta S_{1\to 2}$, $\Delta S_{2\to 3}$, $\Delta S_{1\to 3}$ du gaz et l'entropie créée au cours de l'évolution $1\to 3$; commenter.
- 3) Proposer un moyen de réaliser approximativement une évolution réversible de l'état E_2 à l'état E_3 et représenter la nouvelle évolution $1 \to 2 \to 3$ dans un diagramme de Clapeyron. Les variations d'entropie $\Delta S_{2\to 3}$ et $\Delta S_{1\to 3}$ sont-elles alors modifiées ? Commenter.

EX08

Cycle du moteur Stirling

Dans un moteur Stirling, un gaz décrit de manière quasi-statique et mécaniquement réversible un cycle ABCD tel que : $p_A=1$ bar ; $V_A=2,50$ L ; $V_B=0,50$ L ; les évolutions AB et CD sont isothermes aux températures respectives $T_A=301$ K et $T_C=903$ K ; les évolutions BC et DA sont isochores. Le gaz est assimilé à un gaz parfait de coefficient $\gamma=1,40,\ R=8,314$ J.K $^{-1}$.mol $^{-1}$.

- 1) Calculer le nombre de moles de gaz et les pressions $p_B,\ p_C$ et p_D Tracer l'allure du diagramme de Watt $(p,\ V)$.
- 2) Calculer le travail et le transfert thermique reçus par le gaz au cours de chacune des évolutions $AB,\ BC$ et CA.
- 3) Vérifier que les transferts thermiques Q_{BC} et Q_{DA} se compensent. Exprimer le rendement $r = -\frac{W_{AB} + W_{CD}}{Q_{CD}}$ du moteur en fonction des températures T_A et T_C et le calculer.
- 4) Montrer que le rendement r serait identique si le gaz était assimilé à un gaz de sphères dures pour lequel l'équation d'état et l'expression de l'énergie interne s'écrivent pour une mole :

$$p(V-b) = nRT$$
 et $U = \frac{5RT}{2}$

avec b constante.